搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双参数扫描的量子存储辅助测量设备无关量子密钥分发协议

刘畅 孙铭烁 罗一振 董书言 张春辉 王琴

引用本文:
Citation:

基于双参数扫描的量子存储辅助测量设备无关量子密钥分发协议

刘畅, 孙铭烁, 罗一振, 董书言, 张春辉, 王琴

Dual-paramter-scanning-based quantum- memory- assisted measurement-device-independent quantum key distribution protocol

LIU Chang, SUN Mingshuo, LUO Yizhen, DONG Shuyan, ZHANG Chunhui, WANG Qin
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 基于量子存储辅助的测量设备无关量子密钥分发(MDI-QKD)协议原理上能有效提升量子密钥分发系统的传输距离和密钥率, 但现有三强度诱骗态方案受有限长效应影响严重, 仍存在密钥率低、安全传输距离受限等问题. 针对以上问题, 本文提出了一种基于双参数扫描的量子存储辅助MDI-QKD协议, 一方面, 通过使用四强度诱骗态方法降低有限长效应的影响; 另一方面, 结合集体约束模型与双参数扫描算法来优化有限样本下的单光子计数率和相位误码率的估算精度, 从而有效提升系统的整体性能. 同时, 本文开展了相关数值仿真计算, 仿真结果显示, 本方案与现有其他同类MDI-QKD方案, 比如基于存储辅助的三强度诱骗态方案以及不使用存储的四强度诱骗态方案相比, 在相同的实验条件下, 分别提升了超过30 km和100 km的安全传输距离. 因此, 本文工作将为未来发展远距离量子通信网络提供重要的参考价值.
    Measurement-device-independent quantum key distribution (MDI-QKD) protocol can effectively resist all possible attacks targeting the measurement devices in a quantum key distribution (QKD) system, thus exhibiting high security. However, due to the protocol’s high sensitivity to channel attenuation, its key generation rate and transmission distance are significantly limited in practical applications.To improve the performance of MDI-QKD, researchers have proposed quantum-memory (QM)-assisted MDI-QKD protocol, which has enhanced the protocol's performance to a certain extent. Nevertheless, under finite-size conditions where the total number of transmitted pulses is limited, accurately estimating the relevant statistical parameters is still a challenge. As a result, existing QM-assisted MDI-QKD schemes still encounters issues such as low key rates and limited secure transmission distances.To solve these problems, this work proposes a novel improved finite-size QM-assisted MDI-QKD protocol. By utilizing quantum memories to temporarily store early-arriving pulses and release them synchronously, the protocol effectively reduces the influence caused by channel asymmetry. Additionally, the protocol introduces a four-intensity decoy-state method to improve the estimation accuracy of single-photon components. Meanwhile, to mitigate the influence of finite-length effects on QM schemes, the proposed protocol combines a collective constraint model and a double-scanning algorithm to jointly estimate scanning error counts and vacuum-related counts. This approach enhances the estimation accuracy of the single-photon detection rate and phase error rate under finite-size conditions, thereby significantly improving the secure key rate of the MDI-QKD system.Simulation results show that under the same experimental conditions, compared with the existing QM-assisted three-intensity decoy-state MDI-QKD protocol and the four-intensity decoy-state MDI-QKD protocol based on Heralded Single-photon Source (HSPS), the proposed protocol extends the secure transmission distance by more than 30 km and 100 km, respectively. This proves that under the same parameter settings, the proposed scheme exhibits significant advantages in both key rate and secure transmission distance. Therefore, this research provides important theoretical references and valuable benchmarks for developing long-distance, high-security quantum communication networks.
  • 图 1  基于量子存储辅助的MDI-QKD系统装置示意图, 其中IM为强度调制器, NC为非线性晶体, DM为二色镜, PM为相位调制器, FM为法拉第反射镜, Cir为环形器, D0, D1, D2为单光子探测器, PC为泡克耳斯盒, BS为光束分离器, PBS为偏振光束分离器, BSM代表贝尔态测量装置, FPGA代表现场可编程逻辑门阵列

    Fig. 1.  Schematic diagram of a quantum memory-assisted MDI-QKD system, where IM represents intensity modulator, NC represents nonlinear crystal, DM represents dichroic mirror, PM represents phase modulator, FM represents Faraday mirror, Cir represents circulator, D0, D1, D2 represent single-photon detectors, PC represents pockels cell, BS represents beam splitter, PBS represents polarization beam splitter, BSM represents Bell-state measurement device, FPGA represents field programmable gate array.

    图 2  本文提出的方案与已有MDI-QKD方案的系统的增益$S_{{x_{\text{A}}}, {y_{\text{B}}}}^K$ (a) 和误码率$ E_{{x_{\text{A}}}, {y_{\text{B}}}}^K $(b) 曲线对比. 总脉冲数$N = {10^{10}}$

    Fig. 2.  Comparison of the system gain $S_{{x_{\text{A}}}, {y_{\text{B}}}}^K$ (a) and quantum bit-error rate $ E_{{x_{\text{A}}}, {y_{\text{B}}}}^K $ (b) between the proposed scheme and existing MDI-QKD schemes. Total number of pulses $N = {10^{10}}$.

    图 3  本文提出的方案与已有MDI-QKD方案的密钥率曲线对比. 总脉冲数$N = {10^{10}}$, 存储轮数$M = 20$

    Fig. 3.  Comparison between the proposed scheme and existing MDI-QKD schemes. Total number of pulses $N = {10^{10}}$, and the number of storage rounds $M = 20.$

    图 4  有限长效应对不同方案的影响. 存储轮数$M = 10$

    Fig. 4.  Comparison of the impact of finite-size effects on different QKD schemes. Number of storage rounds $M = 10.$

    图 5  在不同存储保真度 (a) 与存储效率(b) 下密钥率随传输距离的变化. 存储轮数$M = 10$, 总脉冲数$N = {10^{10}}$

    Fig. 5.  Variation of the key rate with transmission distance under (a) different storage fidelities and (b) different storage efficiencies. Number of storage rounds $M = 10$, and the total number of pulses $N = {10^{10}}$.

    图 6  不同存储效率下密钥率随存储轮数的变化. 总脉冲数$N = {10^{10}}$

    Fig. 6.  Variation of the key rate with the number of storage rounds under different storage efficiencies. Total number of pulses $N = {10^{10}}$.

    表 1  基于量子存储的四强度诱骗态MDI-QKD协议仿真使用的参数

    Table 1.  Simulation parameters used in the quantum-memory-based four-intensity decoy-state MDI-QKD protocol.

    ${e_{\text{d}}}$ $Pd$ $P{d_{\text{t}}}$ ${\eta _{\text{d}}}$ ${\eta _{\text{t}}}$ $\xi $ $f$ $\alpha $/(dB·km–1)
    $0.015$ $ {10^{ - 7}} $ ${10^{ - 7}}$ $0.6$ $0.75$ ${10^{ - 10}}$ $1.16$ $0.2$
    下载: 导出CSV
  • [1]

    Bennett C H, Brassard G 1984 Proceedings of IEEE International Conference on Computers, System and Signal Processing (Vol. 1 of 3) (Bangalore: IEEE) p175

    [2]

    Lo H K, Curty M, Qi B 2012 Phys. Rev. Lett. 108 130503Google Scholar

    [3]

    Zhou Y H, Yu Z W, Wang X B 2016 Phys. Rev. A 93 042324Google Scholar

    [4]

    Yin H L, Chen T Y, Yu Z W, Liu H, You L X, Zhou Y H, Chen S J, Mao Y, Huang M Q, Zhang W J et al. 2016 Phys. Rev. Lett. 117 190501Google Scholar

    [5]

    Jiang C, Yu Z W, Hu X L, Wang X B 2021 Phys. Rev. A 103 012402Google Scholar

    [6]

    Chen Y P, Liu J Y, Sun M S et al. 2021 Opt. Lett. 46 3729Google Scholar

    [7]

    Chanelière T, Matsukevich D, Jenkins S, Lan S Y, Kennedy T A B, Kuzmich A 2005 Nature 438 833Google Scholar

    [8]

    Panayi C, Razavi M, Ma X F, Lütkenhaus N 2014 New J. Phys. 16 043005Google Scholar

    [9]

    Piparo N L, Razavi M, Panayi C 2015 IEEE J. Sel. Top. Quantum Electron. 21 138Google Scholar

    [10]

    Pittman T B, Franson J D 2002 Phys. Rev. A 66 062302Google Scholar

    [11]

    Evans C J, Nunn C M, Cheng S W L, Franson J D, Pittman T B 2023 Phys. Rev. A 108 L050601Google Scholar

    [12]

    Sun M S, Zhang C H, Luo Y Z, Wang S, Liu Y, Li J, Wang Q 2025 Appl. Phys. Lett. 126 104001Google Scholar

    [13]

    Sun M S, Zhang C H, Ding H J, Zhou X Y, Li J, Wang Q 2023 Phys. Rev. Appl. 20 024029Google Scholar

    [14]

    Wang Q, Karlsson A 2007 Phys. Rev. A 76 014309Google Scholar

    [15]

    Mo X F, Zhu B, Han Z F, Gui Y Z, Guo G C 2005 Opt. Lett. 30 2632Google Scholar

    [16]

    Goswami I, Mandal M, Mukhopadhyay S 2022 J. Opt. 51 379Google Scholar

    [17]

    Kaneda F, Xu F H, Chapman J, Kwiat P G 2017 Optica 4 1034Google Scholar

    [18]

    Yu Z W, Zhou Y H, Wang X B 2015 Phys. Rev. A 91 032318Google Scholar

    [19]

    Wang Q, Wang X B 2014 Sci. Rep. 4 4612Google Scholar

    [20]

    Curty M, Xu F H, Cui W, Lim C C W, Tamaki K, Lo H K 2014 Nat. Commun. 5 4732Google Scholar

    [21]

    Zhou X Y, Zhang C H, Zhang C M, Wang Q 2017 Phys. Rev. A 96 052337Google Scholar

    [22]

    Ren Z A, Chen Y P, Liu J Y, Ding H J, Wang Q 2021 IEEE Commun. Lett. 25 940Google Scholar

    [23]

    Xu J X, Ma X, Liu J Y, Zhang C H, Li H W, Zhou X Y, Wang Q 2024 Sci. China Inf. Sci. 67 202501Google Scholar

    [24]

    Duan L M, Lukin M, Cirac L, Zoller P 2001 Nature 414 413Google Scholar

    [25]

    Duan L M, Cirac J I, Zoller P 2002 Phys. Rev. A 66 023818Google Scholar

    [26]

    Gujarati T P, Wu Y K, Duan L M 2018 Phys. Rev. A 97 033826Google Scholar

    [27]

    Li X K, Song X Q, Guo Q W, Zhou X Y, Wang Q 2021 Chin. Phys. B 30 060305Google Scholar

    [28]

    Abruzzo S, Kampermann H, Bruß D 2014 Phys. Rev. A 89 012301Google Scholar

    [29]

    Jozsa R 1994 J. Mod. Opt. 41 2315Google Scholar

  • [1] 刘畅, 孙铭烁, 罗一振, 董书言, 张春辉, 王琴. 基于双参数扫描的量子存储辅助测量设备无关量子密钥分发协议. 物理学报, doi: 10.7498/aps.75.20251171
    [2] 李思莹, 朱顺, 胡飞飞, 黄昱, 林旭斌, 覃楚珺, 曹渊, 刘云. 改进的关联源量子密钥分发. 物理学报, doi: 10.7498/aps.74.20250268
    [3] 罗一振, 马洛嘉, 孙铭烁, 吴思睿, 邱丽华, 王禾, 王琴. 基于监控标记单光子源的量子密钥分发协议. 物理学报, doi: 10.7498/aps.73.20241269
    [4] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发. 物理学报, doi: 10.7498/aps.72.20230652
    [5] 王云飞, 周颖, 王英, 颜辉, 朱诗亮. 量子存储性能及应用分析. 物理学报, doi: 10.7498/aps.72.20231203
    [6] 刘天乐, 徐枭, 付博玮, 徐佳歆, 刘靖阳, 周星宇, 王琴. 基于回归决策树的测量设备无关型量子密钥分发参数优化. 物理学报, doi: 10.7498/aps.72.20230160
    [7] 邢雪燕, 李霞霞, 陈宇辉, 张向东. 基于光子晶体微腔的回波光量子存储. 物理学报, doi: 10.7498/aps.71.20220083
    [8] 周湃, 李霞霞, 邢雪燕, 陈宇辉, 张向东. 基于掺铒晶体的光量子存储和调控. 物理学报, doi: 10.7498/aps.71.20211803
    [9] 孟杰, 徐乐辰, 张成峻, 张春辉, 王琴. 标记单光子源在量子密钥分发中的应用. 物理学报, doi: 10.7498/aps.71.20220344
    [10] 史保森, 丁冬生, 张伟, 李恩泽. 基于拉曼协议的量子存储. 物理学报, doi: 10.7498/aps.68.20182215
    [11] 窦建鹏, 李航, 庞晓玲, 张超妮, 杨天怀, 金贤敏. 量子存储研究进展. 物理学报, doi: 10.7498/aps.68.20190039
    [12] 杨天书, 周宗权, 李传锋, 郭光灿. 多模式固态量子存储. 物理学报, doi: 10.7498/aps.68.20182207
    [13] 周飞, 雍海林, 李东东, 印娟, 任继刚, 彭承志. 基于不同介质间量子密钥分发的研究. 物理学报, doi: 10.7498/aps.63.140303
    [14] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案. 物理学报, doi: 10.7498/aps.57.4941
    [15] 米景隆, 王发强, 林青群, 梁瑞生, 刘颂豪. 诱惑态在“双探测器”准单光子光源量子密钥分发系统中的应用. 物理学报, doi: 10.7498/aps.57.678
    [16] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究. 物理学报, doi: 10.7498/aps.57.5605
    [17] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发. 物理学报, doi: 10.7498/aps.56.1924
    [18] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发. 物理学报, doi: 10.7498/aps.56.5243
    [19] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统. 物理学报, doi: 10.7498/aps.56.6434
    [20] 马海强, 李亚玲, 赵 环, 吴令安. 基于双偏振分束器的量子密钥分发系统. 物理学报, doi: 10.7498/aps.54.5014
计量
  • 文章访问数:  15
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-29
  • 修回日期:  2025-10-23
  • 上网日期:  2025-12-13

/

返回文章
返回