搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

W13+离子的电子碰撞单电离截面的理论研究

张世平 张芳军 李麦娟 张登红

引用本文:
Citation:

W13+离子的电子碰撞单电离截面的理论研究

张世平, 张芳军, 李麦娟, 张登红

Theoretical investigation of electronimpact single ionization of W13+ ion

Zhang Shi-Ping, Zhang Fang-Jun, Li Mai-Juan, Zhang Deng-Hong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本文采用细致能级扭曲波(level-to-level distorted-wave, LLDW)方法详细地计算了W13+离子基组态[Kr]4d105s24f13和亚稳态[Kr]4d105s24f125p的电子碰撞单电离(EISI)截面,主要包括了直接电离(DI)和激发自电离(EA)截面对EISI截面的贡献。为提升计算可靠性,我们在原子结构计算中引入了组态相互作用。本文还重点计算了长寿命亚稳态对EISI截面的贡献,其中母离子束中长寿命亚稳态所占的分数是通过理论模型来确定的。将本文的计算结果与Schury等人的实验结果和理论结果进行比较,发现在考虑了长寿命亚稳态的贡献后本文的计算结果和Schury等人的实验结果吻合地很好。
    Electron-ion collision is one of the fundamental processes in atomic and molecular physics, and the study of this process can provide insight into the mechanism of electron-atom/ion interaction. It has important applications in plasma physics and astrophysics. Accurate electron-impact cross-sections are important in plasma modeling. In generally, total EISI cross-sections consists of the direct ionization (DI) and the indirect ionization processes, with the latter further divided into excitation autoionization (EA), resonant excitation double auto-ionization (REDA) and resonant excitation auto- double ionization (READI) processes. In this work, the electron-impact single ionization (EISI) crosssections for the ground state [Kr]4d105s24f13 of W13+ ions are calculated in detail by using the level-to-level distorted-wave (LLDW) method, which mainly includes the contributions of direct ionization (DI) and excited auto-ionization (EA) cross-sections to the EISI cross-sections. Our computational results demonstrate that when configuration interaction are incorporated, the calculated values show excellent agreement with experimental data for electron impact energies exceeding 500 eV. However, significant discrepancies persist near the ionization threshold. we have confirmed that these discrepancies primarily originate from the presence of long-lived metastable ions. To achieve better agreement with experimental observations, we further calculated EISI cross-sections for 71 energy levels of the metastable state 4 d10 5 s2 4 f12 5p with lifetimes greater than 1.5×10-5s. The total EISI cross-sections of these 71 energy levels were obtained by theoretical fitting and compared with the experimental results by Schury et al. (Figure), and it was found that our results were in good agreement with the experimental results of Schury et al. after considering the contribution of long-lived metastable.
  • [1]

    Müller A 2008 Adv. At. Mol. Opt. Phys. 55 293

    [2]

    Dai J, Hou Y, Yuan J 2010 Phys. Rev. Lett 104 245001

    [3]

    Nakamura N, Tobiyama H, Nohara H, Kato D, Watanabe H, Currell F J, Ohtani S 2006 Phys. Rev. A 73 020705

    [4]

    Jin F, Borovik A, Ebinger B, Schippers S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 075201

    [5]

    Zhang D H, Kwon D H. 2014 J. Phys. B: At. Mol. Opt. Phys. 47 075202

    [6]

    Kynienė A, Merkelis G, Šukys A, Masys Š, Pakalka S, Kisielius R, Jonauskas V 2018 J. Phys. B: At. Mol. Opt. Phys. 51 155202

    [7]

    Müller A. 2015 Atoms. 3 120

    [8]

    Skinner C H 2009 Phys Scr. T134 014022

    [9]

    Montague R G, Harrison M F A, Smith A C H 1984 J. Phys. B: At. Mol. Phys.17 3295

    [10]

    Stenke M, Aichele K, Harthiramani D, Hofmann G, Steidl M, Volpel R, Salzborn E 1995 J. Phys. B: At. Mol. Opt. Phys. 28 2711

    [11]

    Stenke M, Aichele K, Hathiramani D, Hofmann G, Steidl M, Volpel R, Shevelko V P, Tawara H, Salzborn E 1995 J. Phys. B: At. Mol. Opt. Phys. 28 4853

    [12]

    Rausch J, Becker A, Spruck K, Hellhund J, Schippers S, Borovik A, Huber K, Müller A 2012 J Phys: Conf Ser 388 062022

    [13]

    Spruck K, Becker A, Borovik A, Gharaibeh M F, Rausch J, Schippers S, Müller A 2014 J Phys: Conf Ser 488 062026

    [14]

    Borovik A, Ebinger B, Schury D, Schippers S, Müller A 2016 Phys. Rev. A 93 012708

    [15]

    Schury D, Borovik A, Ebinger B, Jin F, Spruck K, Müller A, Schippers S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 015201

    [16]

    Scott N S, Burke P G. 1980 J. Phys. B: At. Mol. Phys. 13 4299

    [17]

    Ma Y, Liu L, Wu Y, Qu Y, Wang J 2020 Phys. Rev. A 101 052703

    [18]

    Munoz Burgos J M, Loch S D, Ballance C P, Boivin R F 2009 A&A 500 1253

    [19]

    Li F, Liang G Y, Bari M A, Zhao G 2013 A&A 556 A32

    [20]

    Pindzol M S, Loch S D. 2019 Eur. Phys. J. D 73 78

    [21]

    Hu S X. 2007 Phys. Rev. Lett 98 133201

    [22]

    Pindzola M S, Abdel-Naby S A, Colgan J P 2019 J. Phys. B: At. Mol. Opt. Phys. 52 095201

    [23]

    Colgan J, Pindzola M S, Childers G, Khakoo M A 2006 Phys. Rev. A 73 042710

    [24]

    Loch S D, Ludlow J A, Pindzola M S, Whiteford A D, Griffin D C 2005 Phys .Rev. A 72 052716

    [25]

    Borovik A, Gharaibeh M F, Hillenbrand P M, Schippers S, Müller A 2013 J. Phys. B: At. Mol. Opt. Phys. 46 175201

    [26]

    Borovik A, Brandau C, Jacobi J, Schippers S, Müller A 2011 J. Phys. B: At. Mol. Opt. Phys. 44 205205

    [27]

    Zhang D, Xie L, Jiang J, Wu Z, Dong C, Shi Y, Qu Y 2018 Chin. Phys. B 27 053402

    [28]

    Bao R, Wei J, Chen L, Li B, Chen X 2023 Chin. Phys. B 32 063401

    [29]

    Liu P F, Liu Y P, Zeng J L, Yuan J M 2014 Phys. Rev. A 89 042704

    [30]

    Jonauskas V 2019 J. Quant. Spectrosc. Radiat. Transfer 239 106659

    [31]

    Zhang F, Ding X, Gao C, Zhang D, Zeng J, Dong C 2024 Phys. Scr. 99 035409

    [32]

    Pindzola M S, Griffin D C. 1997 Phys. Rev. A 56 1654-1657

    [33]

    Pindzola M S, Loch S D. 2016 Phys. Rev. A 93 062709

    [34]

    Jin F, Borovik A, Ebinger B, Schippers S 2020 J. Phys. B: At. Mol. Opt. Phys. 53 175201

    [35]

    Zhang S , Zhang F, Zhang D, Ding X, Jiang J, Xie L, Ma Y, Li M, Dong C 2024 Chin. Phys. B 33 033401

    [36]

    Chen L, Li B, Chen X 2022 J. Quant. Spectrosc. Radiat. Transfer 285 108179

    [37]

    Jonauskas V, Kynienė A, Kučas S, Pakalka S, Masys Š, Prancikevičius A, Borovik A, Gharaibeh M F, Schippers S, Müller A 2019 Phys. Rev. A 100 062701

    [38]

    Gu M F 2008 Can. J. Phys. 86 675-689

    [39]

    Kwon D H, Savin D W 2012 Phys. Rev. A 86 022701

    [40]

    Kynienė A, Kučas S, Pakalka S, Masys Š, Jonauskas V 2019 Phys. Rev. A 100 052705

    [41]

    Chen M H, Reed K J, Moores D L 1990 Phys. Rev. Lett 64 1350

    [42]

    Atomic Spectra Database. NIST, 2009

  • [1] 周旭, 王川, 胡荣豪, 陶治豪, 邓小良, 梁亦寒, 李晓亚, 吕蒙, 祝文军. 中高Z元素原子、离子的电子碰撞电离与激发截面快速计算方法. 物理学报, doi: 10.7498/aps.73.20240213
    [2] 马莉莉, 张世平, 张芳军, 李麦娟, 蒋军, 丁晓彬, 颉录有, 张登红, 董晨钟. W6+离子的电子碰撞电离研究. 物理学报, doi: 10.7498/aps.73.20240408
    [3] 莫佳伟, 裘银伟, 伊若冰, 吴俊, 王志坤, 赵丽华. 基于温度的亚稳态氧化石墨烯性能. 物理学报, doi: 10.7498/aps.68.20190670
    [4] 罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞. 纳米静态随机存储器低能质子单粒子翻转敏感性研究. 物理学报, doi: 10.7498/aps.65.068501
    [5] 敬明, 邓卫, 王昊, 季彦婕. 基于跟车行为的双车道交通流元胞自动机模型. 物理学报, doi: 10.7498/aps.61.244502
    [6] 郑亮, 马寿峰, 贾宁. 基于驾驶员行为的元胞自动机模型研究. 物理学报, doi: 10.7498/aps.59.4490
    [7] 杨宁选, 蒋 军, 颉录有, 董晨钟. Breit相互作用对类氦离子亚稳态1s2s 3S1电子碰撞激发截面的影响. 物理学报, doi: 10.7498/aps.57.2888
    [8] 陈时东, 朱留华, 孔令江, 刘慕仁. 优先随机慢化及预测间距对交通流的影响. 物理学报, doi: 10.7498/aps.56.2517
    [9] 乔秀梅, 张国平, 张覃鑫. 模拟卢瑟福实验室的实验以检验理论模拟. 物理学报, doi: 10.7498/aps.55.1181
    [10] 王光军, 王 芳, 沈保根. LaFe11.4Al1.6中铁磁相与反铁磁相的双相共存. 物理学报, doi: 10.7498/aps.54.1410
    [11] 邝 华, 孔令江, 刘慕仁. 考虑延迟概率因素对混合车辆敏感驾驶交通流模型的研究. 物理学报, doi: 10.7498/aps.53.4138
    [12] 雷 丽, 薛 郁, 戴世强. 交通流的一维元胞自动机敏感驾驶模型. 物理学报, doi: 10.7498/aps.52.2121
    [13] 齐静波, 陈重阳, 王炎森. 类钠离子的电子碰撞电离截面. 物理学报, doi: 10.7498/aps.50.1475
    [14] 颜士翔, 陈重阳, 滕舟轩, 王炎森, 孙永盛. 低和中等电离度离子的电子碰撞电离截面的扭曲波计算. 物理学报, doi: 10.7498/aps.47.583
    [15] 滕华国, 徐至展, 胡畏, 王炎森, 方渡飞. 类钠铜离子的激发自电离. 物理学报, doi: 10.7498/aps.45.1788
    [16] 方泉玉, 蔡蔚, 沈智军, 李萍, 邹宇, 徐元光, 陈国新. 电子与高荷电离子碰撞激发的扭曲波截面. 物理学报, doi: 10.7498/aps.44.383
    [17] 方渡飞, 王炎森, 胡畏, 高海滨, 陆福全. 类硼离子的电子碰撞电离截面. 物理学报, doi: 10.7498/aps.42.40
    [18] 胡畏, 方渡飞, 王炎森, 陆福全, 汤家镛, 杨福家. 包含激发-自电离的类锂离子的电子碰撞电离截面. 物理学报, doi: 10.7498/aps.42.1416
    [19] 方渡飞, 王炎森, 胡畏. 类氦离子的电子碰撞电离微分截面. 物理学报, doi: 10.7498/aps.41.744
    [20] 沈俊锋, 徐云飞, 吴璧如, 郑幼凤, 陆杰, 王云仙. Yb的激光三步激发自电离谱. 物理学报, doi: 10.7498/aps.41.732
计量
  • 文章访问数:  29
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-11-05

/

返回文章
返回