-
本文通过数值模拟研究了在中国聚变工程实验堆(CFETR)偏滤器靶板偏压系统作用下等离子体边缘局域模(Edge Localized Modes,ELMs)的动力学演化过程。基于混合运行模式下的二维动力学平衡分布,采用电流丝模型结合磁力线追踪方法,计算偏压驱动下沿磁力线方向的刮削层(Scrape-Off Layer,SOL)电流丝分布,并利用毕奥–萨伐尔定律求解电流丝产生的三维扰动磁场。在真空场近似下,采用谱分析方法研究了三维扰动磁场的共振谱分布及其对边界磁拓扑的影响,从而确定在相同刮削层电流幅值下的最优偏压配置。基于该最优配置,利用三维非线性电阻性平衡求解程序HINT计算不同偏压电流条件下的平衡结构,并进一步采用三维非线性磁流体程序MIPS进行不稳定性分析。结果表明,在最优偏压配置下,当刮削层电流(ISOL)达到1 kA时,台基区的压强剖面发生显著改变,边缘局域模主导的不稳定性总动能饱和幅度降低约70%。研究结果预测了偏滤器靶板偏压系统在CFETR装置中实现ELM控制的可行性,为未来聚变堆中边缘不稳定性控制提供了物理依据与参考。This study investigates the dynamic evolution of edge-localized modes (ELMs) in the China Fusion Engineering Test Reactor (CFETR) under the influence of a biased divertor target plate system using integrated numerical simulations. By combining magnetic field line tracing with the three-dimensional equilibrium code HINT and the nonlinear MHD instability code MIPS, the feasibility of employing a biasing system as an ELM control technique for CFETR is systematically evaluated. The results demonstrate that, for an optimal bias configuration, a bias-driven scrape-off layer (SOL) current of 1000 A can significantly alter the pedestal pressure distribution and reduce the saturated kinetic energy of ELM-related instabilities by approximately 70%.
ELM control in H-mode operation is essential for future tokamak reactors such as CFETR, as uncontrolled Type-I ELMs can impose intolerable transient heat loads on plasma-facing components. Although resonant magnetic perturbations (RMPs) are among the most effective ELM control techniques, their implementation in reactor environments is challenged by limited installation space and severe neutron irradiation. In parallel, the biased divertor approach provides a more reactor-compatible alternative by generating helical currents in the SOL without the need for in-vessel coils. In this work, a coupled HINT – MIPS modeling framework is employed to assess the impact of bias-driven SOL currents on three-dimensional MHD equilibrium and edge instabilities in CFETR.
The simulations are based on a 13 MA hybrid H-mode equilibrium. A filament current model combined with magnetic field line tracing is used to calculate the spatial distribution of bias-driven SOL currents along magnetic field lines, as illustrated in Fig. 1(a). The resulting three-dimensional magnetic perturbations are then obtained using the Biot – Savart law. Several representative bias configurations are examined, including“+ + + + + + ++”, “++ ++ ++ --”,“++ -- ++ --”,“+- +- +- +-”, and“-+ -+ -+ -+”. Analysis of the resonant magnetic spectra and magnetic topology reveals that the configuration with all electrodes biased positively exhibits the strongest resonant component at toroidal mode number n=4 maximizing the edge Chirikov parameter (Fig. 1(b)). This configuration is therefore identified as optimal for further investigation.
Using the HINT code, three-dimensional nonlinear resistive equilibria are calculated for different SOL current amplitudes. The bias-driven magnetic perturbations lead to the formation of magnetic islands at rational surfaces and stochastic magnetic fields near the plasma edge, resulting in significant modifications of the pressure profile. The magnitude of pressure redistribution increases with SOL current amplitude as shown in Fig. 2. These equilibrium changes directly affect the pedestal pressure gradient and thus the stability of edge MHD modes.
After establishing the initial 3D equilibrium, the MIPS code is used to simulate MHD instabilities. This code solves the full set of MHD equations in cylindrical coordinates. Fig.3(a) shows the time evolution of MHD instability kinetic energy, comparing cases with and without the n=4 SOL helical current.
Subsequently, the MIPS code is applied to simulate the evolution of edge instabilities based on the reconstructed three-dimensional equilibria. As the SOL current increases from 0 to 1000 A, the linear growth rate and saturated kinetic energy of ELM-related instabilities decrease markedly, with the most pronounced stabilization occurring between 0 and 600 A (Fig. 3(a)). Further increases in SOL current yield diminishing returns, suggesting a combined effect of nonlinear pedestal modification and the intrinsic nonlinear dependence of ballooning-type instabilities on pedestal structure. Pressure perturbation analyses (Fig. 3(b,c)) confirm that the dominant modes are ballooning-like and that their amplitudes are strongly suppressed at higher SOL current levels.
These results clearly demonstrate the potential of biased divertor systems for effective ELM control in CFETR. The generation of SOL helical currents provides a promising and reactorrelevant pathway for mitigating edge instabilities and reducing transient heat loads in H-mode operation. Future work will extend this study using the MARS-F code to incorporate detailed resistive plasma response effects.-
Keywords:
- CFETR /
- Divertor /
- Biased target plate /
- Nonlinear simulation /
- ELM
-
[1] Leonard A W 2014 Phys. Plasmas 21 090501
[2] Snyder P B, Wilson H R, Osborne T H, Leonard A W 2004 Plasma Phys. Control. Fusion 46 A131
[3] Zohm H 1996 Plasma Phys. Control. Fusion 38 105
[4] Connor J W 1998 Plasma Phys. Control. Fusion 40 531
[5] Kim S H, Casper T A, Snipes J A 2018 Nucl. Fusion 58 056013
[6] Suttrop W 2000 Plasma Phys. Control. Fusion 42 A1
[7] Loarte A, Saibene G, Sartori R, Campbell D, Becoulet M, Horton L, Eich T, Herrmann A, Matthews G, Asakura N, Chankin A, Leonard A, Porter G, Federici G, Janeschitz G, Shimada M, Sugihara M 2003 Plasma Phys. Control. Fusion 45 1549
[8] Igochine V 2012 Nucl. Fusion 52 074010
[9] King J D, La Haye R J, Petty C C, Osborne T H, Lasnier C J, Groebner R J, Volpe F A, Lanctot M J, Makowski M A, Holcomb C T, Solomon W M, Allen S L, Luce T C, Austin M E, Meyer W H, Morse E C 2012 Phys. Plasmas 19 022503
[10] Sun T F, Liu Y, Ji X Q, Liu Y Q, Ke R, Gao J M, Duan X R 2021 Nucl. Fusion 61 036020
[11] Kocsis G, Kálvin S, Lang P T, Maraschek M, Neuhauser J, Schneider W, Szepesi T 2007 Nucl. Fusion 47 1166
[12] Yang Z C, Shi Z B, Zhong W L, Zhang B Y, Fan Q C, Li H D, Jiang M, Shi P W, Chen C Y, Chen W, Liu Z T, Yu D L, Zhou Y, Feng B B, Song X M, Ding X T, Yang Q W, Duan X R 2016 Phys. Plasmas 23 012515
[13] Evans T E, Moyer R A, Burrell K H, Fenstermacher M E, Joseph I, Leonard A W, Osborne T H, Porter G D, Schaffer M J, Snyder P B, Thomas P R, Watkins J G, West W P 2006 Nat. Phys. 2 419
[14] Evans T E, Moyer R A, Thomas P R, Watkins J G, Osborne T H, Boedo J A, Doyle E J, Fenstermacher M E, Finken K H, Groebner R J, Groth M, Harris J H, La Haye R J, Lasnier C J, Masuzaki S, Ohyabu N, Pretty D G, Rhodes T L, Reimerdes H, Rudakov D L, Schaffer M J, Wang G, Zeng L 2004 Phys. Rev. Lett. 92 235003
[15] Liang Y, Koslowski H R, Thomas P R, Nardon E, Alper B, Andrew P, Andrew Y, Arnoux G, Baranov Y, Bécoulet M, Beurskens M, Biewer T, Bigi M, Crombe K, De La Luna E, de Vries P, Fundamenski W, Gerasimov S, Giroud C, Gryaznevich M P, Hawkes N, Hotchin S, Howell D, Jachmich S, Kiptily V, Moreira L, Parail V, Pinches S D, Rachlew E, Zimmermann O 2007 Phys. Rev. Lett. 98 265004
[16] Kirk A, Nardon E, Akers R, Bécoulet M, De Temmerman G, Dudson B, Hnat B, Liu Y Q, Martin R, Tamain P, Taylor D 2010 Nucl. Fusion 50 034008
[17] Canik J M, Maingi R, Evans T E, Bell R E, Gerhardt S P, Kugel H W, LeBlanc B P, Manickam J, Menard J E, Osborne T H, Park J K, Paul S, Snyder P B, Sabbagh S A, Unterberg E A 2010 Nucl. Fusion 50 034012
[18] Suttrop W, Eich T, Fuchs J C, Günter S, Janzer A, Herrmann A, Kallenbach A, Lang P T, Lunt T, Maraschek M, McDermott R M, Mlynek A, Pütterich T, Rott M, Vierle T, Wolfrum E, Yu Q, Zammuto I, Zohm H 2011 Phys. Rev. Lett. 106 225004
[19] Jeon Y M, Park J K, Yoon S W, Ko W H, Lee S G, Lee K D, Yun G S, Nam Y U, Kim W C 2012 Phys. Rev. Lett. 109 035004
[20] Sun Y, Liang Y, Liu Y Q, Gu S, Yang X, Guo W, Wan B 2016 Phys. Rev. Lett. 117 115001
[21] Thomas P R 2008 Proceedings of the 22nd IAEA Fusion Energy Conference Geneva, Switzerland, Oct. 13–18, 2008 IT/1-5
[22] Hao G Z, Dong G Q, Cui B T, Liu Y Q, Xu Y H, Sun T F, Ji X Q, Wang S, Zhao Y F, Xu J Q, Bai X, Zhang N, Li C Y, Wang L, He H D, Gao J M, Liu Y, Zhong W L, Xu M, Duan X R 2022 Nucl. Fusion 63 016006
[23] Huysmans G T A, Czarny O 2007 Nucl. Fusion 47 659
[24] Xu X Q, Dudson B, Snyder P B, Umansky M V, Wilson H 2010 Phys. Rev. Lett. 105 175005
[25] Munaretto S, Orlov D M, Paz-Soldan C, Bykov I, Lasnier C J, Lyons B C, Wang H 2022 Nucl. Fusion 62 026018
[26] Sovinec C R, Glasser A H, Gianakon T A, Barnes D C, Nebel R A, Kruger S E, Schnack D D, Plimpton S J, Tarditi A, Chu M S 2004 J. Comput. Phys. 195 355
[27] Todo Y, Sato T 1998 Phys. Plasmas 5 1321
[28] Zhang W, Jardin S C, Ma Z W, Kleiner A, Zhang H W 2021 Comput. Phys. Commun. 269 108134
[29] Todo Y, Nakajima N, Sato M, Miura H 2010 Plasma Fusion Res. 5 S2062
[30] Huang J, Hao G Z, Suzuki Y, Liu Y Q, Li J X, Li Z J, Sun T F, Cui B T, Yin H K, Wang L, Zhao H Z, Ji X Q, Zhong W L, Liang Y 2025 Nucl. Fusion 65 094001
[31] Cui B T, Sun T F, Zhong W L, Gao Z, Ji X Q, Wu N, Hao G Z, Liang S Y, Wang A, He M Y, Gao J M, Xu M, Duan X R 2024 Nucl. Fusion 64 126027
[32] Chirikov B V 1979 Phys. Rep. 52 263
[33] Suzuki Y 2017 Plasma Phys. Control. Fusion 59 054008
[34] Suzuki Y, Nakajima N, Watanabe K, Nakamura Y, Hayashi T 2006 Nucl. Fusion 46 L19
[35] Schaffer M J, Menard J E, Aldan M P, Bialek J M, Evans T E, Moyer R A 2008 Nucl. Fusion 48 024004
[36] Bazzani A, Malavasi M, Siboni S, Pellacani C, Rambaldi S, Turchetti G 1989 Nuov Cim B 103 659
计量
- 文章访问数: 33
- PDF下载量: 0
- 被引次数: 0









下载: