搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多平面光转换相干合成光场操控技术研究

周宏冰 陶汝茂 闫玥芳 刘辰旭 冯曦 秦瑀 李敏 许党朋 林宏奂 彭志涛 王建军 颜立新 景峰

引用本文:
Citation:

多平面光转换相干合成光场操控技术研究

周宏冰, 陶汝茂, 闫玥芳, 刘辰旭, 冯曦, 秦瑀, 李敏, 许党朋, 林宏奂, 彭志涛, 王建军, 颜立新, 景峰

Multi-Plane Light Conversion Coherent Beam Combining for Optical Field Manipulation

Zhou Hongbing, Tao Rumao, Yan Yuefang, Liu Chenxu, Feng Xi, Qin Yu, Li Min, Xu Dangpeng, Lin Honghuan, Peng Zhitao, Wang Jianjun, Yan Lixin, Jing Feng
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 多平面光转换共孔径相干合成技术作为一种新兴的光场调控手段,能够突破传统分孔径相干合成方法中能量利用率低与光束质量不佳的瓶颈.本文建立了多平面光转换相干合成理论模型,并引入了转换效率、旁瓣抑制比与相位匹配度等多维指标,以全面评估光束质量.提出了分区相位编码、涡旋相位编码等模式映射设计方法,以提升输入输出模式间的匹配度.该方法将5个多焦点光束的平均效率从92%提升至97%,并显著改善光束质量.通过数值仿真,系统探索了多平面光转换在高效、灵活生成复杂结构光场方面的潜力.结果表明,多平面光转换相干合成可以生成多种复杂结构光场,5个拉盖尔-高斯光束、5个几何图形和5个字母图案的平均效率分别为97.4%、99.2%和96.5%,旁瓣抑制比优于14 dB,相位匹配度高于96%.此外,探讨了基于模式分解的任意光束整形方法的可行性及其对振幅调制的需求,并分析了相位板数量与模式数量之间的制约关系.本文研究证明了MPLC相干合成实现高能量利用率与高光束质量的光场操控的可行性,有望为高功率结构光场在激光加工、量子信息等领域的应用提供理论依据和技术参考.
    Multi-Plane Light Conversion (MPLC) coherent beam combining (CBC) presents a promising approach for flexible optical field manipulation, overcoming the limitations of low energy utilization and poor beam quality in traditional CBC methods. However, its potential for generating diverse structured beams and the underlying design principles remain underexplored. In this work, theoretical model of MPLC-based CBC system was constructed to perform numerical investigation on the property and capability of MPLC optical field manipulation. Localized phase coding and vortex phase coding methods were proposed for mode mapping design to enhance the match between input and output modes. By employing multi-dimensional evaluation metrics including conversion efficiency (η), side-lobe suppression ratio (SSR), and phase matching degree (PMD), the performance of different coding strategies was systematically compared. The results manifested that while random coding yielded an average efficiency of 92% for five multi-focus beams, both localized and vortex coding significantly enhanced output quality, achieving a superior average efficiency of 97.1%. Based on the proposed encoding methods, MPLC successfully produced 5 Laguerre-Gaussian (LG) beams, 5 geometric shapes, and 5 letter patterns with remarkably high average efficiencies, reaching 97.4%, 99.2%, and 96.5%, respectively, accompanied by high SSR (>14 dB) and PMD (>96%). Furthermore, a strategy for arbitrary beam shaping by decomposing the target field into a linear combination of orthogonal modes was proposed and confirmed using a 21-mode MPLC. Simultaneously, its flexibility and the consequential requirement for strong amplitude modulation on the laser array were discussed. Finally, the relationship between the number of supported modes and the required number of phase plates was also analyzed, illustrating that maintaining high efficiency for a larger number of modes necessitates a significant increase in the number of phase plates. This study effectively generated a wide range of structured beams with minimal stray light and high energy utilization, demonstrating that MPLC-based CBC is a powerful and versatile technique for high-efficiency, high-quality optical field manipulation. Future work should focus on optimizing the design to reduce the requisite number of planes, paving the way for practical applications in high-power laser processing, optical communications, and quantum optics.
  • [1]

    Forbes A, Oliveira M D, Dennis M R 2021 Nat. Photonics 15 253

    [2]

    He C, Shen Y J, Forbes A 2022 Light Sci. Appl. 11 205

    [3]

    Barati Sedeh H, Litchinitser N M 2023 Nanophotonics 12 2687

    [4]

    Yang Y Q, Forbes A, Cao L C 2023 Opto-Electronic Sci. 2 230026

    [5]

    Zeng Y X, Sha X B, Zhang C, Zhang Y, Deng H C, Lu H P, Qu G Y, Xiao S M, Yu S H, Kivshar Y, Song Q H 2025 Nature 643 1240

    [6]

    Li Z C, Liu W W, Zhang Y B, Cheng H, Zhang S, Chen S Q 2024 PhotoniX 5 30

    [7]

    Zhang Z, Wang Y, Zhang L, Yang H, Zhao S, Pan X, He W, Ma Y, Kong L, Xiao L, Zhao C 2025 Nat. Commun. 16 7857

    [8]

    Zhou S, Li L, Gao L, Zhou Z, Yang J, Zhang S, Wang T, Gao C, Fu S 2025 Light Sci. Appl. 14 167

    [9]

    Lin D, Carpenter J, Feng Y T, Jain S, Jung Y M, Feng Y J, Zervas M N, Richardson D J 2020 Nat. Commun. 11 3986

    [10]

    Eyal S, Yaniv V, Benayahu U Proceedings of Fiber Lasers XVII: Technology and Systems California, United States, February 1-6, 2020 p1126021

    [11]

    Prossotowicz M, Flamm D, Heimes A, Jansen F, Otto H-J, Budnicki A, Killi A, Morgner U 2021 Opt. Lett. 46 1660

    [12]

    Zhou H B, Yan Y F, Liu C X, Feng X, Qin Y, Li M, Tao R M, Lin H H, Peng Z T, Wang J J, Yan L X, Jing F 2025 High Power Laser Sci. Eng. (accepted)

    [13]

    Zhou H B, Zhang H Y, Li M, Feng X, Xie L H, Liu Y, Chu Q H, Yan Y F, Tao R M, Lin H H, Wang J J, Yan L X, Jing F 2024 High Power Laser Part. Beams 36 061001 (in Chinese) [周宏冰, 张昊宇, 李敏, 冯曦, 谢亮华, 刘玙, 楚秋慧, 闫玥芳, 陶汝茂, 林宏奂, 王建军, 颜立新, 景峰 2024 强激光与粒子束 36 061001]

    [14]

    Zhou P, Chang H X, Su R T, Wang X L, Ma Y X 2024 Chin. J. Lasers 51 0121002 (in Chinese) [周朴, 常洪祥, 粟荣涛, 王小林, 马阎星 2024 中国激光 51 0121002]

    [15]

    Li C, Zhang J Y, Ren B, Chang H X, Wang T, Guo K, Zhang Y Q, Su R T, Leng J Y, Xu J M, Wu J, Zhou P 2024 Chin. J. Lasers 51 1901006 (in Chinese) [李灿, 张嘉怡, 任博, 常洪祥, 王涛, 郭琨, 张雨秋, 粟荣涛, 冷进勇, 许将明, 吴坚, 周朴 2024 中国激光 51 1901006]

    [16]

    Wu J, Ma Y X, Ma P F, Su R T, Li C, Jiang M, Chang H X, Ren S, Chang Q, Wang T, Ren B, Zhou P 2021 Infrared Laser Eng. 50 20210621 (in Chinese) [吴坚, 马阎星, 马鹏飞, 粟荣涛, 李灿, 姜曼, 常洪祥, 任帅, 常琦, 王涛, 任博, 周朴 2021 红外与激光工程 50 20210621]

    [17]

    Karr T, Trebes J 2024 Phys. Today 77 32

    [18]

    Chang Q, Gao Z Q, Deng Y, Ren S, Ma P F, Su R T, Ma Y X, Zhou P 2023 Chin. J. Lasers 50 0616001 (in Chinese) [常琦, 高志强, 邓宇, 任帅, 马鹏飞, 粟荣涛, 马阎星, 周朴 2023 中国激光 50 0616001]

    [19]

    Li H K, Xie L H, Zhang C, Tao R M, Shu Q, Li M, Shen B J, Feng X, Xu L X, Wang J J 2023 Front. Phys. 11 1195655

    [20]

    Zhi D, Hou T Y, Ma P F, Ma Y X, Zhou P, Tao R M, Wang X L, Si L 2019 High Power Laser Sci. Eng. 7 e33

    [21]

    Long J H, Jin K K, Chen Q, Chang H X, Chang Q, Ma Y X, Wu J, Su R T, Ma P F, Zhou P 2023 Opt. Lett. 48 5021

    [22]

    Liu S X, Liu H, Qi X P, Peng W J, Feng Y J, Chen L, Li Z D, Sun Y H, Ma Y, Zhao Z G, Gao Q S, Liu Z J, Tang C 2023 Opt. Lett. 48 5121

    [23]

    Shu B W, Zhang Y Q, Nie Z Q, Tang S Q, Leng J Y, Zhou P 2025 Appl. Phys. Lett. 126 221101

    [24]

    Liu H Y, Li J, Jin K, Shu B W, Zhang Y Q, Nie Z Q, Wu J, Leng J Y, Zhou P 2025 Optica 12 1280

    [25]

    Asaf N, Nina A, Eyal S Proceedings of Fiber Lasers XIX: Technology and Systems California, United States, January 22 - February 28, 2022 p119810B

    [26]

    Weber R, Wagner J, Peter A, Hagenlocher C, Spira A, Urbach B, Shekel E, Vidne Y 2025 J. Manuf. Mater. Proc. 9 85

    [27]

    Zhang W, Jin K, Su R, Chang H, Ma Y, Jiang Z, Zhou P 2025 Opt. Express 33 35374

    [28]

    Jin K K, Chang H X, Long J H, Su R T, Zhang Y Q, Zhang J Y, Ma Y X, Zhou P 2024 Appl. Phys. Lett. 125 021108

    [29]

    Fsaifes I, Daniault L, Bellanger S, Veinhard M, Bourderionnet J, Larat C, Lallier E, Durand E, Brignon A, Chanteloup J C 2020 Opt. Express 28 20152

    [30]

    Klenke A, Jauregui C, Steinkopff A, Aleshire C, Limpert J 2022 Prog. Quantum. Electron 84 100412

    [31]

    Billaud A, Gomez F, Allioux D, Laurenchet N, Jian P, Pinel O, Labroille G Proceedings of 2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS) Oregon, United States, October 14-16, 2019

    [32]

    Morizur J-F, Nicholls L, Jian P, Armstrong S, Treps N, Hage B, Hsu M, Bowen W, Janousek J, Bachor H-A 2010 J. Opt. Soc. Am. A 27 2524

    [33]

    Limery A, Lombard L, Bourdon P, Billaud A, Pinel O, Labroille G, Guennic T L, Jian P Proceedings of Technologies for Optical Countermeasures XVIII and High-Power Lasers: Technology and Systems, Platforms, Effects V Online Only, September 3-18, 2021 p118670H

    [34]

    Demur R, Leviandier L, Turpin E, Bourderionnet J, Lallier E 2023 Opt. Express 31 32105

    [35]

    Garcia L, Pinel O, Jian P, Barré N, Jaffrès L, Morizur J F, Labroille G Proceedings of High-Power Laser Materials Processing - Applications, Diagnostics, and Systems VI California, United States, January 31 - February 2, 2017 p1009705

    [36]

    CANUNDA-USP PureBeam https://www.cailabs.com/[2022-3]

    [37]

    Zhou H B, Tao R M, Feng X, Qin Y, Yan Y F, Liu C X, Li M, Lin H H, Peng Z T, Wang J J, Yan L X, Jing F 2025 Chin. J. Lasers 52 1701007 (in Chinese) [周宏冰, 陶汝茂, 冯曦, 秦瑀, 闫玥芳, 刘辰旭, 李敏, 林宏奂, 彭志涛, 王建军, 颜立新, 景峰 2025 中国激光 52 1701007]

    [38]

    Molesky S, Lin Z, Piggott A Y, Jin W, Vucković J, Rodriguez A W 2018 Nat. Photonics 12 659

    [39]

    Sakamaki Y, Saida T, Hashimoto T, Takahashi H 2007 J. Lightwave Technol. 25 3511

    [40]

    Schmiegelow C T, Schulz J, Kaufmann H, Ruster T, Poschinger U G, Schmidt-Kaler F 2016 Nat. Commun. 7 12998

    [41]

    Devlin R C, Ambrosio A, Rubin N A, Mueller J P B, Capasso F 2017 Science 358 896

    [42]

    Alonso M A, Dennis M R 2017 Optica 4 476

    [43]

    Lee J C T, Alexander S J, Kevan S D, Roy S, McMorran B J 2019 Nat. Photonics 13 205

  • [1] 王井上, 张瑶, 王军利, 魏志义, 常国庆. 飞秒光纤激光相干合成技术最新进展. 物理学报, doi: 10.7498/aps.70.20201683
    [2] 钟哲强, 母杰, 王逍, 张彬. 基于紧聚焦方式的阵列光束相干合成特性分析. 物理学报, doi: 10.7498/aps.69.20200034
    [3] 彭一鸣, 薛煜, 肖光宗, 于涛, 谢文科, 夏辉, 刘爽, 陈欣, 陈芳琳, 孙学成. 相干合成涡旋光束的螺旋谱分析及应用研究. 物理学报, doi: 10.7498/aps.68.20190880
    [4] 黄沛, 方少波, 黄杭东, 侯洵, 魏志义. 基于平衡光学互相关方法的超短脉冲激光相干合成技术. 物理学报, doi: 10.7498/aps.67.20181851
    [5] 谭毅, 李新阳. 光束相干合成中填充因子对远场光强分布的影响. 物理学报, doi: 10.7498/aps.63.094202
    [6] 耿超, 罗文, 谭毅, 刘红梅, 牟进博, 李新阳. 基于自适应桶中功率评价函数的光纤放大器相干合成实验研究. 物理学报, doi: 10.7498/aps.62.224202
    [7] 周泽民, 曾新吾, 龚昌超, 赵云, 田章福. 大功率调制气流声源阵列的相干合成实验研究. 物理学报, doi: 10.7498/aps.62.134305
    [8] 朱亚东, 肖虎, 王小林, 马阎星, 周朴. 利用全光纤结构Michelson腔实现两路高功率双包层光纤激光器相干合成. 物理学报, doi: 10.7498/aps.61.054210
    [9] 李建龙, 冯国英, 周寿桓, 李玮. 单口径相干合成系统激光光束的M2因子研究. 物理学报, doi: 10.7498/aps.61.094206
    [10] 耿超, 李新阳, 张小军, 饶长辉. 基于目标在回路的三路光纤传输激光相干合成实验. 物理学报, doi: 10.7498/aps.61.034204
    [11] 连天虹, 王石语, 过振, 李兵斌, 蔡德芳, 文建国. 用于激光雷达的相干合成光束研究. 物理学报, doi: 10.7498/aps.60.124208
    [12] 耿超, 李新阳, 张小军, 饶长辉. 倾斜相差对光纤激光相干合成的影响与模拟校正. 物理学报, doi: 10.7498/aps.60.114202
    [13] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, doi: 10.7498/aps.60.094211
    [14] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法光纤激光相干合成的高精度相位控制系统. 物理学报, doi: 10.7498/aps.59.973
    [15] 范馨燕, 刘京郊, 刘金生, 武敬力. 多阵元光纤相干列阵的理论与实验研究. 物理学报, doi: 10.7498/aps.59.2462
    [16] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法的多波长激光相干合成. 物理学报, doi: 10.7498/aps.59.5474
    [17] 韩伟涛, 侯蓝田, 耿鹏程. 双包层多芯光子晶体光纤自相干合成的数值分析与实验. 物理学报, doi: 10.7498/aps.59.7091
    [18] 肖 瑞, 侯 静, 姜宗福. 激光器阵列的部分相干性对相干合成远场输出特性的影响. 物理学报, doi: 10.7498/aps.57.853
    [19] 肖 瑞, 侯 静, 姜宗福. 光纤放大器阵列的远场特性研究. 物理学报, doi: 10.7498/aps.56.4550
    [20] 肖 瑞, 周 朴, 侯 静, 姜宗福, 刘 明. 激光器的部分相干性对光纤激光器阵列相干合成远场图样的影响. 物理学报, doi: 10.7498/aps.56.819
计量
  • 文章访问数:  26
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-12-22

/

返回文章
返回