-
多平面光转换共孔径相干合成技术作为一种新兴的光场调控手段,能够突破传统分孔径相干合成方法中能量利用率低与光束质量不佳的瓶颈.本文建立了多平面光转换相干合成理论模型,并引入了转换效率、旁瓣抑制比与相位匹配度等多维指标,以全面评估光束质量.提出了分区相位编码、涡旋相位编码等模式映射设计方法,以提升输入输出模式间的匹配度.该方法将5个多焦点光束的平均效率从92%提升至97%,并显著改善光束质量.通过数值仿真,系统探索了多平面光转换在高效、灵活生成复杂结构光场方面的潜力.结果表明,多平面光转换相干合成可以生成多种复杂结构光场,5个拉盖尔-高斯光束、5个几何图形和5个字母图案的平均效率分别为97.4%、99.2%和96.5%,旁瓣抑制比优于14 dB,相位匹配度高于96%.此外,探讨了基于模式分解的任意光束整形方法的可行性及其对振幅调制的需求,并分析了相位板数量与模式数量之间的制约关系.本文研究证明了MPLC相干合成实现高能量利用率与高光束质量的光场操控的可行性,有望为高功率结构光场在激光加工、量子信息等领域的应用提供理论依据和技术参考.Multi-Plane Light Conversion (MPLC) coherent beam combining (CBC) presents a promising approach for flexible optical field manipulation, overcoming the limitations of low energy utilization and poor beam quality in traditional CBC methods. However, its potential for generating diverse structured beams and the underlying design principles remain underexplored. In this work, theoretical model of MPLC-based CBC system was constructed to perform numerical investigation on the property and capability of MPLC optical field manipulation. Localized phase coding and vortex phase coding methods were proposed for mode mapping design to enhance the match between input and output modes. By employing multi-dimensional evaluation metrics including conversion efficiency (η), side-lobe suppression ratio (SSR), and phase matching degree (PMD), the performance of different coding strategies was systematically compared. The results manifested that while random coding yielded an average efficiency of 92% for five multi-focus beams, both localized and vortex coding significantly enhanced output quality, achieving a superior average efficiency of 97.1%. Based on the proposed encoding methods, MPLC successfully produced 5 Laguerre-Gaussian (LG) beams, 5 geometric shapes, and 5 letter patterns with remarkably high average efficiencies, reaching 97.4%, 99.2%, and 96.5%, respectively, accompanied by high SSR (>14 dB) and PMD (>96%). Furthermore, a strategy for arbitrary beam shaping by decomposing the target field into a linear combination of orthogonal modes was proposed and confirmed using a 21-mode MPLC. Simultaneously, its flexibility and the consequential requirement for strong amplitude modulation on the laser array were discussed. Finally, the relationship between the number of supported modes and the required number of phase plates was also analyzed, illustrating that maintaining high efficiency for a larger number of modes necessitates a significant increase in the number of phase plates. This study effectively generated a wide range of structured beams with minimal stray light and high energy utilization, demonstrating that MPLC-based CBC is a powerful and versatile technique for high-efficiency, high-quality optical field manipulation. Future work should focus on optimizing the design to reduce the requisite number of planes, paving the way for practical applications in high-power laser processing, optical communications, and quantum optics.
-
[1] Forbes A, Oliveira M D, Dennis M R 2021 Nat. Photonics 15 253
[2] He C, Shen Y J, Forbes A 2022 Light Sci. Appl. 11 205
[3] Barati Sedeh H, Litchinitser N M 2023 Nanophotonics 12 2687
[4] Yang Y Q, Forbes A, Cao L C 2023 Opto-Electronic Sci. 2 230026
[5] Zeng Y X, Sha X B, Zhang C, Zhang Y, Deng H C, Lu H P, Qu G Y, Xiao S M, Yu S H, Kivshar Y, Song Q H 2025 Nature 643 1240
[6] Li Z C, Liu W W, Zhang Y B, Cheng H, Zhang S, Chen S Q 2024 PhotoniX 5 30
[7] Zhang Z, Wang Y, Zhang L, Yang H, Zhao S, Pan X, He W, Ma Y, Kong L, Xiao L, Zhao C 2025 Nat. Commun. 16 7857
[8] Zhou S, Li L, Gao L, Zhou Z, Yang J, Zhang S, Wang T, Gao C, Fu S 2025 Light Sci. Appl. 14 167
[9] Lin D, Carpenter J, Feng Y T, Jain S, Jung Y M, Feng Y J, Zervas M N, Richardson D J 2020 Nat. Commun. 11 3986
[10] Eyal S, Yaniv V, Benayahu U Proceedings of Fiber Lasers XVII: Technology and Systems California, United States, February 1-6, 2020 p1126021
[11] Prossotowicz M, Flamm D, Heimes A, Jansen F, Otto H-J, Budnicki A, Killi A, Morgner U 2021 Opt. Lett. 46 1660
[12] Zhou H B, Yan Y F, Liu C X, Feng X, Qin Y, Li M, Tao R M, Lin H H, Peng Z T, Wang J J, Yan L X, Jing F 2025 High Power Laser Sci. Eng. (accepted)
[13] Zhou H B, Zhang H Y, Li M, Feng X, Xie L H, Liu Y, Chu Q H, Yan Y F, Tao R M, Lin H H, Wang J J, Yan L X, Jing F 2024 High Power Laser Part. Beams 36 061001 (in Chinese) [周宏冰, 张昊宇, 李敏, 冯曦, 谢亮华, 刘玙, 楚秋慧, 闫玥芳, 陶汝茂, 林宏奂, 王建军, 颜立新, 景峰 2024 强激光与粒子束 36 061001]
[14] Zhou P, Chang H X, Su R T, Wang X L, Ma Y X 2024 Chin. J. Lasers 51 0121002 (in Chinese) [周朴, 常洪祥, 粟荣涛, 王小林, 马阎星 2024 中国激光 51 0121002]
[15] Li C, Zhang J Y, Ren B, Chang H X, Wang T, Guo K, Zhang Y Q, Su R T, Leng J Y, Xu J M, Wu J, Zhou P 2024 Chin. J. Lasers 51 1901006 (in Chinese) [李灿, 张嘉怡, 任博, 常洪祥, 王涛, 郭琨, 张雨秋, 粟荣涛, 冷进勇, 许将明, 吴坚, 周朴 2024 中国激光 51 1901006]
[16] Wu J, Ma Y X, Ma P F, Su R T, Li C, Jiang M, Chang H X, Ren S, Chang Q, Wang T, Ren B, Zhou P 2021 Infrared Laser Eng. 50 20210621 (in Chinese) [吴坚, 马阎星, 马鹏飞, 粟荣涛, 李灿, 姜曼, 常洪祥, 任帅, 常琦, 王涛, 任博, 周朴 2021 红外与激光工程 50 20210621]
[17] Karr T, Trebes J 2024 Phys. Today 77 32
[18] Chang Q, Gao Z Q, Deng Y, Ren S, Ma P F, Su R T, Ma Y X, Zhou P 2023 Chin. J. Lasers 50 0616001 (in Chinese) [常琦, 高志强, 邓宇, 任帅, 马鹏飞, 粟荣涛, 马阎星, 周朴 2023 中国激光 50 0616001]
[19] Li H K, Xie L H, Zhang C, Tao R M, Shu Q, Li M, Shen B J, Feng X, Xu L X, Wang J J 2023 Front. Phys. 11 1195655
[20] Zhi D, Hou T Y, Ma P F, Ma Y X, Zhou P, Tao R M, Wang X L, Si L 2019 High Power Laser Sci. Eng. 7 e33
[21] Long J H, Jin K K, Chen Q, Chang H X, Chang Q, Ma Y X, Wu J, Su R T, Ma P F, Zhou P 2023 Opt. Lett. 48 5021
[22] Liu S X, Liu H, Qi X P, Peng W J, Feng Y J, Chen L, Li Z D, Sun Y H, Ma Y, Zhao Z G, Gao Q S, Liu Z J, Tang C 2023 Opt. Lett. 48 5121
[23] Shu B W, Zhang Y Q, Nie Z Q, Tang S Q, Leng J Y, Zhou P 2025 Appl. Phys. Lett. 126 221101
[24] Liu H Y, Li J, Jin K, Shu B W, Zhang Y Q, Nie Z Q, Wu J, Leng J Y, Zhou P 2025 Optica 12 1280
[25] Asaf N, Nina A, Eyal S Proceedings of Fiber Lasers XIX: Technology and Systems California, United States, January 22 - February 28, 2022 p119810B
[26] Weber R, Wagner J, Peter A, Hagenlocher C, Spira A, Urbach B, Shekel E, Vidne Y 2025 J. Manuf. Mater. Proc. 9 85
[27] Zhang W, Jin K, Su R, Chang H, Ma Y, Jiang Z, Zhou P 2025 Opt. Express 33 35374
[28] Jin K K, Chang H X, Long J H, Su R T, Zhang Y Q, Zhang J Y, Ma Y X, Zhou P 2024 Appl. Phys. Lett. 125 021108
[29] Fsaifes I, Daniault L, Bellanger S, Veinhard M, Bourderionnet J, Larat C, Lallier E, Durand E, Brignon A, Chanteloup J C 2020 Opt. Express 28 20152
[30] Klenke A, Jauregui C, Steinkopff A, Aleshire C, Limpert J 2022 Prog. Quantum. Electron 84 100412
[31] Billaud A, Gomez F, Allioux D, Laurenchet N, Jian P, Pinel O, Labroille G Proceedings of 2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS) Oregon, United States, October 14-16, 2019
[32] Morizur J-F, Nicholls L, Jian P, Armstrong S, Treps N, Hage B, Hsu M, Bowen W, Janousek J, Bachor H-A 2010 J. Opt. Soc. Am. A 27 2524
[33] Limery A, Lombard L, Bourdon P, Billaud A, Pinel O, Labroille G, Guennic T L, Jian P Proceedings of Technologies for Optical Countermeasures XVIII and High-Power Lasers: Technology and Systems, Platforms, Effects V Online Only, September 3-18, 2021 p118670H
[34] Demur R, Leviandier L, Turpin E, Bourderionnet J, Lallier E 2023 Opt. Express 31 32105
[35] Garcia L, Pinel O, Jian P, Barré N, Jaffrès L, Morizur J F, Labroille G Proceedings of High-Power Laser Materials Processing - Applications, Diagnostics, and Systems VI California, United States, January 31 - February 2, 2017 p1009705
[36] CANUNDA-USP PureBeam https://www.cailabs.com/[2022-3]
[37] Zhou H B, Tao R M, Feng X, Qin Y, Yan Y F, Liu C X, Li M, Lin H H, Peng Z T, Wang J J, Yan L X, Jing F 2025 Chin. J. Lasers 52 1701007 (in Chinese) [周宏冰, 陶汝茂, 冯曦, 秦瑀, 闫玥芳, 刘辰旭, 李敏, 林宏奂, 彭志涛, 王建军, 颜立新, 景峰 2025 中国激光 52 1701007]
[38] Molesky S, Lin Z, Piggott A Y, Jin W, Vucković J, Rodriguez A W 2018 Nat. Photonics 12 659
[39] Sakamaki Y, Saida T, Hashimoto T, Takahashi H 2007 J. Lightwave Technol. 25 3511
[40] Schmiegelow C T, Schulz J, Kaufmann H, Ruster T, Poschinger U G, Schmidt-Kaler F 2016 Nat. Commun. 7 12998
[41] Devlin R C, Ambrosio A, Rubin N A, Mueller J P B, Capasso F 2017 Science 358 896
[42] Alonso M A, Dennis M R 2017 Optica 4 476
[43] Lee J C T, Alexander S J, Kevan S D, Roy S, McMorran B J 2019 Nat. Photonics 13 205
计量
- 文章访问数: 26
- PDF下载量: 1
- 被引次数: 0








下载: