-
With mature fabrication technologies and tunable spin relaxation, IIIV semiconductor two-dimensional quantum structures serve as a preferred material system for developing spintronic devices. This paper reviews the progress in manipulating spin-orbit coupling and spin relaxation in two-dimensional electron gas and two-dimensional hole gas systems via structural design, electric fields, and strain. By combining time-resolved magneto-optical spectroscopy with magnetotransport measurements, we analyze the synergistic modulation of Rashba and Dresselhaus effects to optimize the spin lifetime and highlight the distinct physical pathways for constructing long-lived SU(2) spin states in zinc-blende GaAs and wurtzite GaN heterostructures. For zinc-blende GaAs quantum wells, we discuss the realization of the persistent spin helix state by balancing the Rashba and Dresselhaus effects through structural design and electric field control. In contrast, for wurtzite GaN systems, we reveal that the Rashba and Dresselhaus effects inherently share the same symmetry form, allowing for the direct cancellation of effective magnetic fields to achieve a robust SU(2) electronic state. Ultimately, this comprehensive physical picture provides a scientific basis for material selection and architecture design in future high-performance spintronic devices.
-
Keywords:
- spin dynamics /
- III-V semiconductors /
- spin-orbit coupling /
- spin manipulation
-
[1] Mansfield E, Barnes B, Kline R, Vladar A, Obeng Y, Davydov A 2023 International Roadmap for Devices and Systems (IRDSTM) 2023 Edition: Metrology Gaithersburg, MD, USA, December 8, 2023 p1
[2] Baibich M N, Broto J M, Fert A, Nguyen Van Dau F, Petroff F, Etienne P, Creuzet G, Friederich A, Chazelas J 1988 Phys. Rev. Lett. 61 2472
[3] Fert A 2008 Angew. Chem. Int. Ed. 47 5956
[4] Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323
[5] Ioannou M 2023 Emerg. Minds J for Stu. Res. 1 1
[6] Sinova J, Žutić I 2012 Nat. Mater. 11 368
[7] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488
[8] Šmejkal L, Mokrousov Y, Yan B H, MacDonald A H 2018 Nat. Phys. 14 242
[9] Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nat. Nanotechnol. 11 231
[10] Linder J, Robinson J W A 2015 Nat. Phys. 11 307
[11] Thompson S E, Parthasarathy S 2006 Mater. Today 9 20
[12] Parkin S S P, Hayashi M, Thomas L 2008 Science 320 190
[13] Koo H C, Kwon J H, Eom J, Chang J, Han S H, Johnson M 2009 Science 325 1515
[14] Wunderlich J, Park B G, Irvine A C, Zârbo L P, Rozkotová E, Nemec P, Novák V, Sinova J, Jungwirth T 2010 Science 330 1801
[15] Fiederling R, Keim M, Reuscher G, Ossau W, Schmidt G, Waag A, Molenkamp L W 1999 Nature 402 787
[16] Holub M, Shin J, Saha D, Bhattacharya P 2007 Phys. Rev. Lett. 98 146603
[17] Datta S, Das B 1990 Appl. Phys. Lett. 56 665
[18] Walser M P, Reichl C, Wegscheider W, Salis G 2012 Nat. Phys. 8 757
[19] Bel’kov V V, Olbrich P, Tarasenko S A, Schuh D, Wegscheider W, Korn T, Schüller C, Weiss D, Prettl W, Ganichev S D 2008 Phys. Rev. Lett. 100 176806
[20] Kunihashi Y, Sanada H, Gotoh H, Onomitsu K, Kohda M, Nitta J, Sogawa T 2016 Nat. Commun. 7 10722
[21] Kunihashi Y, Sanada H, Tanaka Y, Gotoh H, Onomitsu K, Nakagawara K, Kohda M, Nitta J, Sogawa T 2017 Phys. Rev. Lett. 119 187703
[22] Zhang S X, Tang N, Sun Z H, Chen S Y, Yang X L, Ge W K, Shen B 2025 Phys. Rev. B 111 195301
[23] Chen S Y, Tang N, Sun Z H, Fan H R, Guo F Q, Wang Y F, Zhang S X, Yang X L, Lin X, Ge W K, Shen B 2025 Phys. Rev. B 112 L161301
[24] Karimov O Z, John G H, Harley R T, Lau W H, Flatté M E, Henini M, Airey R 2003 Phys. Rev. Lett. 91 246601
[25] Iba S, Koh S, Kawaguchi H 2010 Appl. Phys. Lett. 97 202102
[26] Balocchi A, Duong Q H, Renucci P, Liu B L, Fontaine C, Amand T, Lagarde D, Marie X 2011 Phys. Rev. Lett. 107 136604
[27] Hernández-Mínguez A, Biermann K, Hey R, Santos P V 2012 Phys. Rev. Lett. 109 266602
[28] Wang G, Liu B L, Balocchi A, Renucci P, Zhu C R, Amand T, Fontaine C, Marie X 2013 Nat. Commun. 4 2372
[29] Jiang L, Wu M W 2005 Phys. Rev. B 72 033311
[30] English D J, Lagoudakis P G, Harley R T, Eldridge P S, Hübner J, Oestreich M 2011 Phys. Rev. B 84 155323
[31] Liu X C, Tang N, Zhang S X, Zhang X Y, Guan H M, Zhang Y F, Qian X, Ji Y, Ge W K, Shen B 2020 Adv. Sci.7 1903400
[32] Schliemann J, Egues J C, Loss D 2003 Phys. Rev. Lett. 90 146801
[33] Chen Y H, Cheng C Y, Chen S Y, Rodriguez J S D, Liao H T, Watanabe K, Taniguchi T, Chen C W, Sankar R, Chou F C, Chiu H C, Wang W H 2019 npj 2D Mater. Appl. 3 49
[34] Bychkov Y A, Rashba E I 1984 JETP Lett. 39 78
[35] Bihlmayer G, Rader O, Winkler R 2015 New J. Phys. 17 050202
[36] Dyakonov M I 2017 Spin Physics in Semiconductors (Cham: Springer International Publishing) pp39—66
[37] Wang W T, Wu C L, Tsay S F, Gau M H, Lo I, Kao H F, Jang D J, Chiang J C, Lee M E, Chang Y C, Chen C N, Hsueh H C 2007 Appl. Phys. Lett. 91 082110
[38] Fu J Y, Wu M W 2008 J. Appl. Phys.104 093712
[39] Ye H Q, Wang G, Liu B L, Shi Z W, Wang W X, Fontaine C, Balocchi A, Amand T, Lagarde D, Renucci P, Marie X 2012 Appl. Phys. Lett. 101 032104
[40] Zawadzki W, Pfeffer P 2003 Semicond. Sci. Technol. 19 R1
[41] Koralek J D, Weber C P, Orenstein J, Bernevig B A, Zhang S C, Mack S, Awschalom D D 2009 Nature 458 610
[42] Gridnev V N 2002 JETP Lett. 76 502
[43] Bernevig B A, Orenstein J, Zhang S C 2006 Phys. Rev. Lett. 97 236601
[44] Anghel S, Singh A, Passmann F, Iwata H, Moore J N, Yusa G, Li X Q, Betz M 2016 Phys. Rev. B 94 035303
[45] Dresselhaus G 1955 Phys. Rev. 100 580
[46] Zawadzki W, Pfeffer P 2003 Semicond. Sci. Technol. 19 R1
[47] Jancu J M, Scholz R, de Andrada e Silva E A, La Rocca G C 2005 Phys. Rev. B 72 193201
[48] Winkler R 2003 Spin—Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Berlin, Heidelberg: Springer Berlin Heidelberg) pp79—84
[49] Fu J Y, Penteado P H, Candido D R, Ferreira G J, Pires D P, Bernardes E, Egues J C 2020 Phys. Rev. B 101 134416
[50] Wang W T, Wu C L, Chiang J C, Lo I, Kao H F, Hsu Y C, Pang W Y, Jang D J, Lee M E, Chang Y C, Chen C N 2010 J. Appl. Phys.108 083718
[51] Harmon N J, Putikka W O, Joynt R 2011 Appl. Phys. Lett. 98 073108
[52] Wu M W, Jiang J H, Weng M Q 2010 Phys. Rep. 493 61
[53] D’Yakonov M I, Perel’ V I 1971 JETP Lett. 33 1053
[54] Kikkawa J M, Awschalom D D 1998 Phys. Rev. Lett. 80 4313
[55] Boross P, Dóra B, Kiss A, Simon F 2013 Sci. Rep. 3 3233
[56] Bir G L, Aronov A G, Pikus G E 1975 JETP Lett. 42 705
[57] Fishman G, Lampel G 1977 Phys. Rev. B 16 820
[58] Chen Z, Dong G P, Qiu J R 2021 Adv. Quantum Technol. 4 2100052
[59] Meier F, Zakharchenya B P 1984 Optical Orientation (Amsterdam: North-Holland) pp311—321
[60] Jonker B T 2000 Phys. Rev. B 62 8180
[61] Cláudio de Carvalho L, Schleife A, Fuchs F, Bechstedt F 2010 Appl. Phys. Lett. 97 232101
[62] Chuang S L, Chang C S 1996 Phys. Rev. B 54 2491
[63] Taniyama T, Wada E, Itoh M, Yamaguchi M 2011 NPG Asia Mater. 3 65
[64] Ganichev S D, Prettl W 2003 J. Phys.: Condens. Matter 15 R935
[65] Altmann P, Hernandez F G G, Ferreira G J, Kohda M, Reichl C, Wegscheider W, Salis G 2016 Phys. Rev. Lett. 116 196802
[66] Zhang S X, Tang N, Liu X C, Zhang X Y, Fu L, Zhang Y F, Fan T, Sun Z H, Ge W K, Shen B 2021 Appl. Phys. Lett. 118 252107
[67] Zhang S X, Tang N, Zhang X Y, Liu X C, Fu L, Zhang Y F, Fan T, Sun Z H, Wang F T, Ge W K, Shen B 2021 Fund. Res. 1 656
[68] Syperek M, Yakovlev D R, Greilich A, Bayer M, Misiewicz J, Reuter D, Wieck A 2007 AIP Conf. Proc. 893 1303
[69] Uenoyama T, Sham L J 1990 Phys. Rev. Lett. 64 3070
[70] Ferreira R, Bastard G 1991 Phys. Rev. B 43 9687
[71] Hilton D J, Tang C L 2002 Phys. Rev. Lett. 89 146601
[72] El Khalifi Y, Gil B, Mathieu H, Fukunaga T, Nakashima H 1989 Phys. Rev. B 39 13533
[73] Korn T, Kugler M, Griesbeck M, Schulz R, Wagner A, Hirmer M, Gerl C, Schuh D, Wegscheider W, Schüller C 2010 New J. Phys. 12 043003
[74] Kugler M, Andlauer T, Korn T, Wagner A, Fehringer S, Schulz R, Kubová M, Gerl C, Schuh D, Wegscheider W, Vogl P, Schüller C 2009 Phys. Rev. B 80 035325
[75] Yamada S, Fujimoto A, Yagi S, Narui H, Yamaguchi E, Imanaka Y 2024 Appl. Phys. Lett. 124 262102
[76] Choi W Y, Kim H J, Chang J, Han S H, Koo H C, Johnson M 2015 Nat. Nanotechnol. 10 666
[77] Choi W Y, Kim H J, Chang J, Han S H, Abbout A, Saidaoui H B M, Manchon A, Lee K J, Koo H C 2018 Nano Lett. 18 7998
[78] Oltscher M, Ciorga M, Utz M, Schuh D, Bougeard D, Weiss D 2014 Phys. Rev. Lett. 113 236602
[79] Kallaher R L, Heremans J J, Goel N, Chung S J, Santos M B 2010 Phys. Rev. B 81 075303
[80] van Weperen I, Tarasinski B, Eeltink D, Pribiag V S, Plissard S R, Bakkers E P A M, Kouwenhoven L P, Wimmer M 2015 Phys. Rev. B 91 201413
[81] Badalyan S M, Fabian J 2010 Phys. Rev. Lett. 105 186601
[82] Fu J Y, Penteado P H, Hachiya M O, Loss D, Egues J C 2016 Phys. Rev. Lett. 117 226401
[83] Bhattacharya A, Baten M Z, Bhattacharya P 2016 Appl. Phys. Lett. 108 042406
[84] Kum H, Heo J, Jahangir S, Banerjee A, Guo W, Bhattacharya P 2012 Appl. Phys. Lett. 100 182407
[85] Park T E, Park Y H, Lee J M, Kim S W, Park H G, Min B C, Kim H J, Koo H C, Choi H J, Han S H, Johnson M, Chang J 2017 Nat. Commun. 8 15722
计量
- 文章访问数: 40
- PDF下载量: 2
- 被引次数: 0









下载: