搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高灵敏太赫兹超导动态电感探测器噪声等效功率表征方法

苏润丰 谭睿 顾子辰 吴敬波 涂学凑 陈健 吴培亨

引用本文:
Citation:

高灵敏太赫兹超导动态电感探测器噪声等效功率表征方法

苏润丰, 谭睿, 顾子辰, 吴敬波, 涂学凑, 陈健, 吴培亨

Characterization methods for noise equivalent power of high-sensitivity terahertz superconducting kinetic inductance detectors

Su Run-Feng, Tan Rui, Gu Zi-Chen, Wu Jing-Bo, Tu Xue-Cou, Chen Jian, Wu Pei-Heng
Article Text (iFLYTEK Translation)
PDF
导出引用
在线预览
  • 超导动态电感探测器具有低噪声、低暗电流、高灵敏度和高动态范围的特点,制备工艺相对简单,且支持本征的高复用因子频分复用读出,引领着下一代毫米波/亚毫米波和太赫兹天文观测大规模探测器阵列技术发展.本文基于与低温黑体源耦合的15 THz铝基超导动态电感探测器,采用频移响应模型法,在一个较宽的吸收功率范围内,良好地拟合了探测器谐振频率偏移与耗散随吸收功率的变化关系,进而得到其响应度,以标定光学噪声等效功率.在300 Hz调制频率下,相对于吸收功率,测得探测器频率读出最小光学噪声等效功率为$7.5 \times 10^{-18} \mathrm{~W} / \sqrt{\mathrm{Hz}}$z,并在1.3 fW以上吸收功率,达光子噪声限性能.与经典的小信号分析法相比,频移响应模型法为动态电感探测器的光学响应度与噪声等效功率表征提供了一种高效、快捷的替代方案.本研究为极低温环境下高灵敏太赫兹超导动态电感探测器噪声等效功率表征,提供了有价值的技术参考.
    For future millimeter/submillimeter and terahertz astronomy, kilo-pixel imaging arrays of ultra-sensitive, background-limited detectors are essential. Superconducting kinetic inductance detectors (KIDs) are a leading candidate for this purpose, given their intrinsic frequency-domain multiplexing and straightforward fabrication. Aluminum, which has a long quasiparticle lifetime, is a crucial material for implementing the sensitive element of a KID. A key figure of merit that quantifies detector sensitivity is the noise equivalent power (NEP). This study compares two characterization methods — small-signal analysis and a frequency-shift response model—for optical responsivity and NEP of an aluminum-based terahertz KID coupled to a cryogenic blackbody. The KID is a lumpedelement, high-Q microwave resonator consisting of a tantalum interdigitated capacitor in parallel with an aluminum inductor, with the latter acting as the 15 THz absorber. The small-signal analysis method, which employs phase and amplitude as observables, demands high precision in blackbody temperature control and involves long measurement times. In contrast, the frequency shift response model method, utilizing frequency and dissipation as observables, places less stringent demands on thermometer resolution and enables faster measurements. Moreover, it fits the fractional frequency shift response more accurately than linear models. Consequently, it represents an efficient and rapid approach for characterizing the optical responsivity and NEP of KIDs. With this method, a minimum optical frequency NEP of $7.5 \times 10^{-18} \mathrm{~W} / \sqrt{\mathrm{Hz}}$ and a dissipation NEP of $7.1 \times 10^{-18} \mathrm{~W} / \sqrt{\mathrm{Hz}}$ were achieved for the terahertz KID at 300 Hz, referenced to the absorbed power. Furthermore, the frequency NEP significantly exceeded the dissipation NEP at 1, 10, and 100 Hz, which is attributable to two-level system noise. Our work offers valuable technical guidance for the rapid NEP characterization of high-sensitivity terahertz KIDs in low-temperature measurement applications.
  • [1]

    Day P K, LeDuc H G, Mazin B A, Vayonakis A, Zmuidzinas J 2003 Nature 425 817

    [2]

    Monfardini A, Swenson L J, Bideaud A, Désert F X, Yates S J C, Benoit A, Baryshev A M, Baselmans J J A, Doyle S, Klein B, Roesch M, Tucker C, Ade P, Calvo M, Camus P, Giordano C, Guesten R, Hoffmann C, Leclercq S, Mauskopf P, Schuster K F 2010 Astron. Astrophys. 521 A29

    [3]

    Ferrari L, Yurduseven O, Llombart N, Yates S J C, Bueno J, Murugesan V, Thoen D J, Endo A, Baryshev A M, Baselmans J J A 2018 IEEE Trans. Terahertz Sci. Technol. 8 127

    [4]

    Shu S, Calvo M, Goupy J, Leclercq S, Catalano A, Bideaud A, Monfardini A, Driessen E F C 2021 Appl. Phys. Lett. 119 092601

    [5]

    Shi Q, Li J, Zhi Q, Wang Z, Miao W, Shi S C 2022 Sci. China-Phys. Mech. Astron. 65 239511

    [6]

    Bueno J, Yurduseven O, Yates S J C, Llombart N, Murugesan V, Thoen D J, Baryshev A M, Neto A, Baselmans J J A 2017 Appl. Phys. Lett. 110 233503

    [7]

    Chi T Y, Shi L L, Su R F, Zang S M, Tan R, Yao S Y, Zhu Y W, Chen J H, Wu J B, Tu X C, Jin B B, Wang H Q, Cao J C, Chen J, Wu P H 2024 Appl. Phys. Lett. 125 202602

    [8]

    Su R F, Shi L L, Zhou T, Yao B Z, Wu J B, Tu X C, Jia X Q, Kang L, Jin B B, Wang H B, Chen J, Wu P H 2022 Supercond. Sci. Technol. 35 055016

    [9]

    Day P K, Cothard N F, Albert C, Foote L, Kane E, Eom B H, Thakur R B, Janssen R M J, Beyer A, Echternach P M, van Berkel S, Hailey-Dunsheath S, Stevenson T R, Dabironezare S, Baselmans J J A, Glenn J, Bradford C M, Leduc H G 2024 Phys. Rev. X 14 041005

    [10]

    Su R F, Tan R, Chen J H, Zhu Y W, Chi T Y, Zang S M, Wu J B, Tu X C, Zheng K, Chen J, Wu P H 2025 Appl. Phys. Lett. 127 192602

    [11]

    Dai X, Wang H, Wang Y, Mai Z, Shi Z, Wang Y F, Jia H, Liu J, He Q, Dai M, Ouyang P, Chai Y, Wei L F, Zhang L, Zhong Y, Guo W, Liu S, Yu D 2025 Appl. Phys. Lett. 126 012602

    [12]

    Guo W, Liu X, Wang Y, Wei Q, Wei Q, Hubmayr J, Fowler J, Ullom J, Vale L, Vissers M R, Gao J 2017 Appl. Phys. Lett. 110 212601

    [13]

    Kouwenhoven K, Fan D, Biancalani E, de Rooij S A H, Karim T, Smith C S, Murugesan V, Thoen D J, Baselmans J J A, de Visser P J 2023 Phys. Rev. Appl. 19 034007

    [14]

    Mazin B A, Meeker S R, Strader M J, Szypryt P, Marsden D, van Eyken J C, Duggan G E, Walter A B, Ulbricht G, Johnson M, Bumble B, O'Brien K, Stoughton C 2013 Publ. Astron. Soc. Pac. 125 1348

    [15]

    Adam R, Adane A, Ade P A R, André P, Andrianasolo A, Aussel H, Beelen A, Benoît A, Bideaud A, Billot N, Bourrion O, Bracco A, Calvo M, Catalano A, Coiffard G, Comis B, De Petris M, Désert F X, Doyle S, Driessen E F C, Evans R, Goupy J, Kramer C, Lagache G, Leclercq S, Leggeri J P, Lestrade J F, Macías-Pérez J F, Mauskopf P, Mayet F, Maury A, Monfardini A, Navarro S, Pascale E, Perotto L, Pisano G, Ponthieu N, Revéret V, Rigby A, Ritacco A, Romero C, Roussel H, Ruppin F, Schuster K, Sievers A, Triqueneaux S, Tucker C, Zylka R 2018 Astron. Astrophys. 609 A115

    [16]

    Mazin B A 2020 arXiv 2004.14576v1 [astro-ph.IM]

    [17]

    de Visser P J, Baselmans J J A, Bueno J, Llombart N, Klapwijk T M 2014 Nat. Commun. 5 3130

    [18]

    Hailey-Dunsheath S, Berkel S v, Beyer A D, Foote L, Janssen R M J, LeDuc H G, Echternach P M, Bradford C M, Baselmans J J A, Dabironezare S, Day P K, Cothard N F, Glenn J 2025 IEEE Trans. Terahertz Sci. Technol. 15 4

    [19]

    Gao J 2008 The Physics of Superconducting Microwave Resonators Ph.D. Dissertation (Pasadena: California Institute of Technology)

    [20]

    Baselmans J J A, Facchin F, Laguna A P, Bueno J, Thoen D J, Murugesan, Llombart N, de Visser P J 2022 Astron. Astrophys. 665 A17

    [21]

    Shi Z, Dai X, Wang H, Mai Z, Ouyang P, Wang Y, Chai Y, Wei L, Liu X, Pan C, Guo W, Shu S, Wang Y 2024 Acta Phys. Sin. 73 038501 (in Chinese) [石中誉, 代旭城, 王浩宇, 麦展彰, 欧阳鹏辉, 王翼卓, 柴亚强, 韦联福, 刘旭明, 潘长钊, 郭伟杰, 舒诗博, 王轶文 2024 物理学报 73 038501]

    [22]

    Su R F, Chen J H, Tan R, Zhu Y W, Chi T Y, Zang S M, Wu J B, Tu X C, Yu M, Chen J, Wu P H 2025 Appl. Phys. Lett. 127 162601

    [23]

    Baselmans J J A, Bueno J, Yates S J C, Yurduseven O, Llombart N, Karatsu K, Baryshev A M, Ferrari L, Endo A, Thoen D J, de Visser P J, Janssen R M J, Murugesan V, Driessen E F C, Coiffard G, Martin-Pintado J, Hargrave P, Griffin M 2017 Astron. Astrophys. 601 A89

    [24]

    Foote L, Albert C, Baselmans J, Beyer A D, Cothard N F, Day P K, Hailey-Dunsheath S, Echternach P M, Janssen R M J, Kane E, Leduc H, Liu L J, Nguyen H, Perido J, Glenn J, Zmuidzinas J, Bradford C M 2024 J. Low Temp. Phys. 214 219

  • [1] 周飞, 陈奇, 刘浩, 戴越, 魏晨, 袁杭, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 张蜡宝, 吴培亨. 基于超导单光子探测器的红外光学系统噪声分析和优化. 物理学报, doi: 10.7498/aps.73.20231526
    [2] 石中誉, 代旭城, 王浩宇, 麦展彰, 欧阳鹏辉, 王翼卓, 柴亚强, 韦联福, 刘旭明, 潘长钊, 郭伟杰, 舒诗博, 王轶文. 超导动态电感探测器的噪声谱分析. 物理学报, doi: 10.7498/aps.73.20231504
    [3] 黄广伟, 吴坤, 陈晔, 李林祥, 张思远, 王尊刚, 朱红英, 周春芝, 张逸韵, 刘志强, 伊晓燕, 李晋闽. 单晶金刚石探测器对14 MeV单能中子的响应. 物理学报, doi: 10.7498/aps.70.20210891
    [4] 张彪, 陈奇, 管焰秋, 靳飞飞, 王昊, 张蜡宝, 涂学凑, 赵清源, 贾小氢, 康琳, 陈健, 吴培亨. 超导纳米线单光子探测器光子响应机制研究进展. 物理学报, doi: 10.7498/aps.70.20210652
    [5] 孙永丰, 徐亮, 沈先春, 金岭, 徐寒杨, 成潇潇, 王钰豪, 刘文清, 刘建国. 红外光谱辐射计探测器高阶非线性响应校正方法. 物理学报, doi: 10.7498/aps.70.20201530
    [6] 黄典, 戴万霖, 王轶文, 贺青, 韦联福. 超导动态电感单光子探测器的噪声处理. 物理学报, doi: 10.7498/aps.70.20210185
    [7] 张天奎, 于明海, 董克攻, 吴玉迟, 杨靖, 陈佳, 卢峰, 李纲, 朱斌, 谭放, 王少义, 闫永宏, 谷渝秋. 激光高能X射线成像中探测器表征与电子影响研究. 物理学报, doi: 10.7498/aps.66.245201
    [8] 刘红梅, 杨春花, 刘鑫, 张建奇, 石云龙. 量子点红外探测器的噪声表征. 物理学报, doi: 10.7498/aps.62.218501
    [9] 王兰喜, 陈学康, 吴敢, 曹生珠, 尚凯文. 晶界对金刚石紫外探测器时间响应性能的影响. 物理学报, doi: 10.7498/aps.61.038101
    [10] 宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振. ZnO纳米线紫外探测器的制备和快速响应性能的研究. 物理学报, doi: 10.7498/aps.61.052901
    [11] 李扬, 郭树旭. 基于稀疏分解的大功率半导体激光器1/f噪声参数估计的新方法. 物理学报, doi: 10.7498/aps.61.034208
    [12] 王光强, 王建国, 童长江, 李小泽, 王雪锋. 高功率太赫兹脉冲半导体探测器的分析与设计. 物理学报, doi: 10.7498/aps.60.030702
    [13] 陈文豪, 杜磊, 殷雪松, 康莉, 王芳, 陈松. PbS红外探测器低频噪声物理模型及缺陷表征研究. 物理学报, doi: 10.7498/aps.60.107202
    [14] 刘小宇, 马文全, 张艳华, 霍永恒, 种明, 陈良惠. 10—14 μm同时响应的双色量子阱红外探测器. 物理学报, doi: 10.7498/aps.59.5720
    [15] 李健军, 郑小兵, 卢云君, 张伟, 谢萍, 邹鹏. 硅陷阱探测器在350—1064 nm波段的绝对光谱响应度定标. 物理学报, doi: 10.7498/aps.58.6273
    [16] 周丽丹, 粟敬钦, 李平, 刘兰琴, 王文义, 王方, 莫磊, 程文雍, 张小民. 高功率固体激光装置光学元件“缺陷”分布的功率谱密度方法及等效求法. 物理学报, doi: 10.7498/aps.58.6279
    [17] 陈长虹, 易新建, 熊笔锋. 基于VO2薄膜非致冷红外探测器光电响应研究. 物理学报, doi: 10.7498/aps.50.450
    [18] 陈岩松. 铁电薄膜探测器PbZrTiO3的红外光电响应实验研究. 物理学报, doi: 10.7498/aps.47.1378
    [19] 甘德昌. 热电探测器对辐射功率的响应. 物理学报, doi: 10.7498/aps.44.137
    [20] 徐锋, 刘辽. 瞬时响应的粒子探测器模型. 物理学报, doi: 10.7498/aps.37.1267
计量
  • 文章访问数:  67
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2026-01-05

/

返回文章
返回