-
超导动态电感探测器具有低噪声、低暗电流、高灵敏度和高动态范围的特点,制备工艺相对简单,且支持本征的高复用因子频分复用读出,引领着下一代毫米波/亚毫米波和太赫兹天文观测大规模探测器阵列技术发展.本文基于与低温黑体源耦合的15 THz铝基超导动态电感探测器,采用频移响应模型法,在一个较宽的吸收功率范围内,良好地拟合了探测器谐振频率偏移与耗散随吸收功率的变化关系,进而得到其响应度,以标定光学噪声等效功率.在300 Hz调制频率下,相对于吸收功率,测得探测器频率读出最小光学噪声等效功率为$7.5 \times 10^{-18} \mathrm{~W} / \sqrt{\mathrm{Hz}}$z,并在1.3 fW以上吸收功率,达光子噪声限性能.与经典的小信号分析法相比,频移响应模型法为动态电感探测器的光学响应度与噪声等效功率表征提供了一种高效、快捷的替代方案.本研究为极低温环境下高灵敏太赫兹超导动态电感探测器噪声等效功率表征,提供了有价值的技术参考.For future millimeter/submillimeter and terahertz astronomy, kilo-pixel imaging arrays of ultra-sensitive, background-limited detectors are essential. Superconducting kinetic inductance detectors (KIDs) are a leading candidate for this purpose, given their intrinsic frequency-domain multiplexing and straightforward fabrication. Aluminum, which has a long quasiparticle lifetime, is a crucial material for implementing the sensitive element of a KID. A key figure of merit that quantifies detector sensitivity is the noise equivalent power (NEP). This study compares two characterization methods — small-signal analysis and a frequency-shift response model—for optical responsivity and NEP of an aluminum-based terahertz KID coupled to a cryogenic blackbody. The KID is a lumpedelement, high-Q microwave resonator consisting of a tantalum interdigitated capacitor in parallel with an aluminum inductor, with the latter acting as the 15 THz absorber. The small-signal analysis method, which employs phase and amplitude as observables, demands high precision in blackbody temperature control and involves long measurement times. In contrast, the frequency shift response model method, utilizing frequency and dissipation as observables, places less stringent demands on thermometer resolution and enables faster measurements. Moreover, it fits the fractional frequency shift response more accurately than linear models. Consequently, it represents an efficient and rapid approach for characterizing the optical responsivity and NEP of KIDs. With this method, a minimum optical frequency NEP of $7.5 \times 10^{-18} \mathrm{~W} / \sqrt{\mathrm{Hz}}$ and a dissipation NEP of $7.1 \times 10^{-18} \mathrm{~W} / \sqrt{\mathrm{Hz}}$ were achieved for the terahertz KID at 300 Hz, referenced to the absorbed power. Furthermore, the frequency NEP significantly exceeded the dissipation NEP at 1, 10, and 100 Hz, which is attributable to two-level system noise. Our work offers valuable technical guidance for the rapid NEP characterization of high-sensitivity terahertz KIDs in low-temperature measurement applications.
-
Keywords:
- noise equivalent power (NEP) /
- optical responsivity /
- characterization methods /
- kinetic inductance detectors (KIDs)
-
[1] Day P K, LeDuc H G, Mazin B A, Vayonakis A, Zmuidzinas J 2003 Nature 425 817
[2] Monfardini A, Swenson L J, Bideaud A, Désert F X, Yates S J C, Benoit A, Baryshev A M, Baselmans J J A, Doyle S, Klein B, Roesch M, Tucker C, Ade P, Calvo M, Camus P, Giordano C, Guesten R, Hoffmann C, Leclercq S, Mauskopf P, Schuster K F 2010 Astron. Astrophys. 521 A29
[3] Ferrari L, Yurduseven O, Llombart N, Yates S J C, Bueno J, Murugesan V, Thoen D J, Endo A, Baryshev A M, Baselmans J J A 2018 IEEE Trans. Terahertz Sci. Technol. 8 127
[4] Shu S, Calvo M, Goupy J, Leclercq S, Catalano A, Bideaud A, Monfardini A, Driessen E F C 2021 Appl. Phys. Lett. 119 092601
[5] Shi Q, Li J, Zhi Q, Wang Z, Miao W, Shi S C 2022 Sci. China-Phys. Mech. Astron. 65 239511
[6] Bueno J, Yurduseven O, Yates S J C, Llombart N, Murugesan V, Thoen D J, Baryshev A M, Neto A, Baselmans J J A 2017 Appl. Phys. Lett. 110 233503
[7] Chi T Y, Shi L L, Su R F, Zang S M, Tan R, Yao S Y, Zhu Y W, Chen J H, Wu J B, Tu X C, Jin B B, Wang H Q, Cao J C, Chen J, Wu P H 2024 Appl. Phys. Lett. 125 202602
[8] Su R F, Shi L L, Zhou T, Yao B Z, Wu J B, Tu X C, Jia X Q, Kang L, Jin B B, Wang H B, Chen J, Wu P H 2022 Supercond. Sci. Technol. 35 055016
[9] Day P K, Cothard N F, Albert C, Foote L, Kane E, Eom B H, Thakur R B, Janssen R M J, Beyer A, Echternach P M, van Berkel S, Hailey-Dunsheath S, Stevenson T R, Dabironezare S, Baselmans J J A, Glenn J, Bradford C M, Leduc H G 2024 Phys. Rev. X 14 041005
[10] Su R F, Tan R, Chen J H, Zhu Y W, Chi T Y, Zang S M, Wu J B, Tu X C, Zheng K, Chen J, Wu P H 2025 Appl. Phys. Lett. 127 192602
[11] Dai X, Wang H, Wang Y, Mai Z, Shi Z, Wang Y F, Jia H, Liu J, He Q, Dai M, Ouyang P, Chai Y, Wei L F, Zhang L, Zhong Y, Guo W, Liu S, Yu D 2025 Appl. Phys. Lett. 126 012602
[12] Guo W, Liu X, Wang Y, Wei Q, Wei Q, Hubmayr J, Fowler J, Ullom J, Vale L, Vissers M R, Gao J 2017 Appl. Phys. Lett. 110 212601
[13] Kouwenhoven K, Fan D, Biancalani E, de Rooij S A H, Karim T, Smith C S, Murugesan V, Thoen D J, Baselmans J J A, de Visser P J 2023 Phys. Rev. Appl. 19 034007
[14] Mazin B A, Meeker S R, Strader M J, Szypryt P, Marsden D, van Eyken J C, Duggan G E, Walter A B, Ulbricht G, Johnson M, Bumble B, O'Brien K, Stoughton C 2013 Publ. Astron. Soc. Pac. 125 1348
[15] Adam R, Adane A, Ade P A R, André P, Andrianasolo A, Aussel H, Beelen A, Benoît A, Bideaud A, Billot N, Bourrion O, Bracco A, Calvo M, Catalano A, Coiffard G, Comis B, De Petris M, Désert F X, Doyle S, Driessen E F C, Evans R, Goupy J, Kramer C, Lagache G, Leclercq S, Leggeri J P, Lestrade J F, Macías-Pérez J F, Mauskopf P, Mayet F, Maury A, Monfardini A, Navarro S, Pascale E, Perotto L, Pisano G, Ponthieu N, Revéret V, Rigby A, Ritacco A, Romero C, Roussel H, Ruppin F, Schuster K, Sievers A, Triqueneaux S, Tucker C, Zylka R 2018 Astron. Astrophys. 609 A115
[16] Mazin B A 2020 arXiv 2004.14576v1 [astro-ph.IM]
[17] de Visser P J, Baselmans J J A, Bueno J, Llombart N, Klapwijk T M 2014 Nat. Commun. 5 3130
[18] Hailey-Dunsheath S, Berkel S v, Beyer A D, Foote L, Janssen R M J, LeDuc H G, Echternach P M, Bradford C M, Baselmans J J A, Dabironezare S, Day P K, Cothard N F, Glenn J 2025 IEEE Trans. Terahertz Sci. Technol. 15 4
[19] Gao J 2008 The Physics of Superconducting Microwave Resonators Ph.D. Dissertation (Pasadena: California Institute of Technology)
[20] Baselmans J J A, Facchin F, Laguna A P, Bueno J, Thoen D J, Murugesan, Llombart N, de Visser P J 2022 Astron. Astrophys. 665 A17
[21] Shi Z, Dai X, Wang H, Mai Z, Ouyang P, Wang Y, Chai Y, Wei L, Liu X, Pan C, Guo W, Shu S, Wang Y 2024 Acta Phys. Sin. 73 038501 (in Chinese) [石中誉, 代旭城, 王浩宇, 麦展彰, 欧阳鹏辉, 王翼卓, 柴亚强, 韦联福, 刘旭明, 潘长钊, 郭伟杰, 舒诗博, 王轶文 2024 物理学报 73 038501]
[22] Su R F, Chen J H, Tan R, Zhu Y W, Chi T Y, Zang S M, Wu J B, Tu X C, Yu M, Chen J, Wu P H 2025 Appl. Phys. Lett. 127 162601
[23] Baselmans J J A, Bueno J, Yates S J C, Yurduseven O, Llombart N, Karatsu K, Baryshev A M, Ferrari L, Endo A, Thoen D J, de Visser P J, Janssen R M J, Murugesan V, Driessen E F C, Coiffard G, Martin-Pintado J, Hargrave P, Griffin M 2017 Astron. Astrophys. 601 A89
[24] Foote L, Albert C, Baselmans J, Beyer A D, Cothard N F, Day P K, Hailey-Dunsheath S, Echternach P M, Janssen R M J, Kane E, Leduc H, Liu L J, Nguyen H, Perido J, Glenn J, Zmuidzinas J, Bradford C M 2024 J. Low Temp. Phys. 214 219
计量
- 文章访问数: 67
- PDF下载量: 1
- 被引次数: 0








下载: