x

留言板

 引用本文:
 Citation:

Simulation of two-dimensional nonlinear problem with solitary wave based on split-step finite pointset method

Ren Jin-Lian, Ren Heng-Fei, Lu Wei-Gang, Jiang Tao
PDF
HTML
• 摘要

在提出一种基于时间分裂格式的纯无网格有限点集(split-step finite pointset method, SS-FPM)法的基础上, 数值模拟了含孤立波的二维非线性薛定谔 (nonlinear Schrödinger, NLS) / (Gross-Pitaevskii, GP) 方程. SS-FPM的构造过程为: 1) 基于时间分裂的思想将非线性薛定谔方程分成线性导数项和非线性项; 2) 采用基于Taylor展开和加权最小二乘法的有限点集法, 借助Wendland权函数, 对线性导数项进行数值离散. 随后, 模拟了带有Dirichlet和周期性边界条件的NLS方程, 将所得结果与解析解做对比. 数值结果表明: 给出的SS-FPM粒子法的优点是在粒子分布非均匀情况下仍具有近似二阶精度, 且较网格类有限差分算法实施容易, 较已有改进的光滑粒子动力学方法计算误差小. 最后, 运用SS-FPM对无解析解的二维周期性边界NLS方程和Dirichlet边界玻色-爱因斯坦凝聚二分量GP方程进行了数值预测, 并与其他数值结果进行对比, 准确展现了非线性孤立波奇异性现象和量子化涡旋过程.

Abstract

In this paper, a split-step finite pointset method (SS-FPM) is proposed and applied to the simulation of the nonlinear Schrödinger/Gross-Pitaevskii equation (NLSE/GPE) with solitary wave solution. The motivation and main idea of SS-FPMisas follows. 1) The nonlinear Schrödinger equation is first divided into the linear derivative term and the nonlinear term based on the time-splitting method. 2) The finite pointset method (FPM) based on Taylor expansion and weighted least square method is adopted, and the linear derivative term is numerically discretized with the help of Wendland weight function. Then the two-dimensional (2D) nonlinear Schrödinger equation with Dirichlet and periodic boundary conditions is simulated, and the numerical solution is compared with the analytical one. The numerical results show that the presented SS-FPM has second-order accuracy even if in the case of non-uniform particle distribution, and is easily implemented compared with the FDM, and its computational error is smaller than those in the existed corrected SPH methods. Finally, the 2D NLS equation with periodic boundary and the two-component GP equation with Dirichlet boundary and outer rotation BEC, neither of which has an analytical solution, are numerically predicted by the proposed SS-FPM. Compared with other numerical results, our numerical results show that the SS-FPM can accurately display the nonlinear solitary wave singularity phenomenon and quantized vortex process.

作者及机构信息

通信作者: 陆伟刚, wglu@yzu.edu.cn ; 蒋涛, jtrjl_2007@126.com
• 基金项目: 国家自然科学基金(批准号: 11501495, 51779215)、中国博士后科学基金(批准号: 2015M581869, 2015T80589)、江苏省自然科学基金(批准号: BK20150436)、国家科技支撑计划(批准号: 2015BAD24B02-02)和江苏高校品牌专业建设工程(批准号: PPZY2015B109) 资助的课题.

Authors and contacts

Corresponding author: Lu Wei-Gang, wglu@yzu.edu.cn ; Jiang Tao, jtrjl_2007@126.com
• Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11501495, 51779215), the Postdoctoral Science Foundation of China (Grant Nos. 2015M581869, 2015T80589), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20150436), the Sub-project of National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2015BAD24B02-02), and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, China (Grant No. PPZY2015B109).

施引文献

• 图 1  几个不同时刻处沿$y = 0.5{\text{π}}$$\left| \psi \right|$变化曲线　(a) 粒子均匀分布; (b) 粒子非均匀分布

Fig. 1.  The change curve of $\left| \psi \right|$ along $y = 0.5{\text{π}}$ at different time: (a) Uniform mode; (b) non-uniform mode.

图 2  两种不同的粒子分布　(a) 均匀粒子分布; (b) 非均匀粒子分布

Fig. 2.  Two kinds of particle distribution: (a) Uniform mode; (b) non-uniform mode

图 3  两个不同位置不同时刻ψ实部变化曲线图　(a) 沿对角线; (b) 沿$y = {\text{π}}$

Fig. 3.  The change curve of real part at two positions with different times: (a) Along the diagonal; (b) along $y = {\text{π}}$

图 4  两个不同时刻波函数$\left| \psi \right|$三维图和等值线图　(a1), (a2) t = 0; (b1), (b2) t = 0.0108

Fig. 4.  The 3D graphs and contour of $\left| \psi \right|$ at two different times: (a1), (a2) t = 0; (b1), (b2) t = 0.0108.

图 5  两个不同时刻$\left| \psi \right|$沿x轴 (y = 0)变化曲线　(a) t = 0.05; (b) t = 0.25

Fig. 5.  The change curve of $\left| \psi \right|$ along x-axis (y = 0) at two different times: (a) t = 0.05; (b) t = 0.25.

图 6  两个不同时刻${\rm{Re}}\left( \psi \right){\rm{,Im}}\left( \psi \right),\left| \psi \right|$的三维数值结果　(a1), (a2), (a3) t = 0; (b1), (b2), (b3) t = 0.25

Fig. 6.  Three-dimensional numerical results of ${\rm{Re}}\left( \psi \right){\rm{,Im}}\left( \psi \right),\left| \psi \right|$ at two different times: (a1), (a2), (a3) t = 0; (b1), (b2), (b3) t = 0.25

•  [1] 陈逸熙, 蔡晓妍, 刘彬, 江迅达, 黎永耀. 准二维空间中的隐秘涡旋量子液滴. 物理学报, 2022, 71(20): 200302. doi: 10.7498/aps.71.20220709 [2] 李敏, 王博婷, 许韬, 水涓涓. 四阶色散非线性薛定谔方程的明暗孤立波和怪波的形成机制. 物理学报, 2020, 69(1): 010502. doi: 10.7498/aps.69.20191384 [3] 蒋涛, 黄金晶, 陆林广, 任金莲. 非线性薛定谔方程的高阶分裂改进光滑粒子动力学算法. 物理学报, 2019, 68(9): 090203. doi: 10.7498/aps.68.20190169 [4] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013 [5] 张解放, 戴朝卿. 非自治物质畸形波的传播操控. 物理学报, 2016, 65(5): 050501. doi: 10.7498/aps.65.050501 [6] 李少峰, 杨联贵, 宋健. 层结流体中在热外源和效应地形效应作用下的非线性Rossby孤立波和非齐次Schrdinger方程. 物理学报, 2015, 64(19): 199201. doi: 10.7498/aps.64.199201 [7] 徐园芬. 一维Tonks-Girardeau原子气区域中 Gross-Pitaevskii方程简化模型的精确行波解. 物理学报, 2013, 62(10): 100202. doi: 10.7498/aps.62.100202 [8] 殷久利, 樊玉琴, 张娟, 田立新. 几类新的可积非线性色散项方程及其孤立波解. 物理学报, 2011, 60(8): 080201. doi: 10.7498/aps.60.080201 [9] 莫嘉琪, 陈贤峰. 一类广义非线性扰动色散方程孤立波的近似解. 物理学报, 2010, 59(3): 1403-1408. doi: 10.7498/aps.59.1403 [10] 江波, 韩修静, 毕勤胜. 一类非线性色散Boussinesq方程的隐式孤立波解. 物理学报, 2010, 59(12): 8343-8347. doi: 10.7498/aps.59.8343 [11] 殷久利, 田立新. 一类非线性色散方程中的新型奇异孤立波. 物理学报, 2009, 58(6): 3632-3636. doi: 10.7498/aps.58.3632 [12] 宗丰德, 杨阳, 张解放. 外势场作用下的玻色-爱因斯坦凝聚啁啾孤子的演化与操控. 物理学报, 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670 [13] 宗丰德, 张解放. 装载于外势场中的玻色-爱因斯坦凝聚N-孤子间的相互作用. 物理学报, 2008, 57(5): 2658-2668. doi: 10.7498/aps.57.2658 [14] 詹杰民, 林 东, 李毓湘. 线性与非线性波的Chebyshev广义有限谱模拟. 物理学报, 2007, 56(7): 3649-3654. doi: 10.7498/aps.56.3649 [15] 杨红娟, 石玉仁, 段文山, 吕克璞. 非线性演化方程孤立波的同伦分析法求解. 物理学报, 2007, 56(6): 3064-3069. doi: 10.7498/aps.56.3064 [16] 石玉仁, 汪映海, 杨红娟, 段文山. 高维非线性演化方程孤立波的同伦分析法求解. 物理学报, 2007, 56(12): 6791-6796. doi: 10.7498/aps.56.6791 [17] 徐志君, 施建青, 李 珍, 蔡萍根. 基于Gross-Pitaevskii能量泛函求解谐振势阱中玻色凝聚气体基态波函数. 物理学报, 2006, 55(7): 3265-3271. doi: 10.7498/aps.55.3265 [18] 于亚璇, 王 琪, 赵雪芹, 智红燕, 张鸿庆. 求解非线性差分方程孤立波解的直接代数法. 物理学报, 2005, 54(9): 3992-3994. doi: 10.7498/aps.54.3992 [19] 唐世敏. 若干非线性波方程的行波解. 物理学报, 1991, 40(11): 1818-1826. doi: 10.7498/aps.40.1818 [20] 杜功焕. 非线性有限束光声效应理论. 物理学报, 1988, 37(5): 769-775. doi: 10.7498/aps.37.769
• 文章访问数:  4187
• PDF下载量:  49
• 被引次数: 0
出版历程
• 收稿日期:  2019-03-11
• 修回日期:  2019-05-05
• 上网日期:  2019-07-01
• 刊出日期:  2019-07-20

基于分裂格式有限点集法对孤立波二维非线性问题的模拟

• 扬州大学, 数学科学学院, 水利与能源动力学院, 扬州　225002
• 通信作者: 陆伟刚, wglu@yzu.edu.cn ; 蒋涛, jtrjl_2007@126.com
基金项目: 国家自然科学基金(批准号: 11501495, 51779215)、中国博士后科学基金(批准号: 2015M581869, 2015T80589)、江苏省自然科学基金(批准号: BK20150436)、国家科技支撑计划(批准号: 2015BAD24B02-02)和江苏高校品牌专业建设工程(批准号: PPZY2015B109) 资助的课题.

/