-
研究了提拉法生长的Er3+/Yb3+:Gd3Sc2Ga3O12和Er3+:Gd3Sc2Ga3O12晶体在室温下320—1700nm范围的吸收光谱和500—750nm范围内的上转换荧光谱,同时对其上转换荧光的可能发生机制、途径以及上转换过程可能对Er3+
-
关键词:
- 光致发光 /
- 上转换 /
- Er3+:Gd3Sc2Ga3O12晶体 /
- Er3+/Yb3+:Gd3Sc2Ga3O12晶体
Er3+/Yb3+:Gd3Sc2Ga3O12 and Er3+:Gd3Sc2Ga3O12 crystals have been grown by Czochralski method. The absorption spectra from 320 to 1700nm and the up-conversion fluorescence spectra from 500 to 750nm of them were investigated at room temperature, respectively. The possible up-conversion luminescence mechanisms in Er3+/Yb3+-codoped crystals and their influences on the 2.8μm laser emission were discussed. Experimental results show that the absorption of Er3+:Gd3Sc2Ga3O12 around 966nm and its bandwidth are remarkably increased by Yb3+ sensitizing. Under 940nm excitation, the up-conversion luminescence intensity of Er3+/Yb3+:Gd3Sc2Ga3O12 is much stronger than that of Er3+:Gd3Sc2Ga3O12. It demonstrates that there exist effective energy transfer processes between Yb3+ and Er3+, and the dominant mechanism of up-conversion may be the energy transfer processes of Yb3+-Er3+ and Er3+-Er3+.-
Keywords:
- photoluminescence /
- up-conversion /
- Er3+:Gd3Sc2Ga3O12 /
- Er3+/Yb3+:Gd3Sc2Ga3O12
计量
- 文章访问数: 3243
- PDF下载量: 836
- 被引次数: 0
Er3+/Yb3+共掺Gd3Sc2Ga3O12晶体的上转换发光
- 收稿日期: 2008-05-27
- 修回日期: 2008-06-10
- 刊出日期: 2008-06-05
摘要: 研究了提拉法生长的Er3+/Yb3+:Gd3Sc2Ga3O12和Er3+:Gd3Sc2Ga3O12晶体在室温下320—1700nm范围的吸收光谱和500—750nm范围内的上转换荧光谱,同时对其上转换荧光的可能发生机制、途径以及上转换过程可能对Er3+
English Abstract
Up-conversion luminescence in Er3+/Yb3+-codoped Gd3Sc2Ga3O12 laser crystals
- Received Date:
27 May 2008
- Accepted Date:
10 June 2008
- Published Online:
05 June 2008
Abstract: Er3+/Yb3+:Gd3Sc2Ga3O12 and Er3+:Gd3Sc2Ga3O12 crystals have been grown by Czochralski method. The absorption spectra from 320 to 1700nm and the up-conversion fluorescence spectra from 500 to 750nm of them were investigated at room temperature, respectively. The possible up-conversion luminescence mechanisms in Er3+/Yb3+-codoped crystals and their influences on the 2.8μm laser emission were discussed. Experimental results show that the absorption of Er3+:Gd3Sc2Ga3O12 around 966nm and its bandwidth are remarkably increased by Yb3+ sensitizing. Under 940nm excitation, the up-conversion luminescence intensity of Er3+/Yb3+:Gd3Sc2Ga3O12 is much stronger than that of Er3+:Gd3Sc2Ga3O12. It demonstrates that there exist effective energy transfer processes between Yb3+ and Er3+, and the dominant mechanism of up-conversion may be the energy transfer processes of Yb3+-Er3+ and Er3+-Er3+.