搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

完整系统Nielsen方程的统一对称性与守恒量

李元成 王小明 夏丽莉

引用本文:
Citation:

完整系统Nielsen方程的统一对称性与守恒量

李元成, 王小明, 夏丽莉

Unified symmetry and conserved quantities of Nielsen equation for a holonomic mechanical system

Li Yuan-Cheng, Wang Xiao-Ming, Xia Li-Li
PDF
导出引用
  • 研究完整系统Nielsen方程的统一对称性与守恒量. 在完整系统Nielsen方程的基础上,首先给出了Nielsen方程的Noether对称性、Lie对称性和Mei对称性与守恒量,其次给出了Nielsen方程的统一对称性的定义和判据,得到Nielsen方程的统一对称性导致的Noether守恒量、Hojman守恒量和Mei守恒量. 举例说明结果的应用.
    The unified symmetry and conserved quantities of Nielsen equation for a holonomic mechanical system are studied. On the base of the Nielsen equation, we first give the Noether symmetry, the Lie symmetry and the Mei symmetry for the equation and the conserved quantities deduced from them, then the definition and the criterion for unified symmetry of Nielsen equation are presented, lastly, the Mei conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity deduced from the unified symmetry are obtained. An example is given to illustrate the application of the result.
    • 基金项目: 河南省教育厅自然科学基础研究项目(批准号:2009A140003)和河南教育学院骨干教师培养基金资助的课题.
    [1]

    [1]Noether A E 1918 Nachr. Akad. Wiss. Gttingen. Math. Phys. KI 235

    [2]

    [2]Mei F X, Liu D and Luo Y 1991 Advanced Analytical Mechanics(Beijing: Beijing Institute of Technology Press)(in Chinese)[梅凤翔、刘端、罗勇1991高等分析力学(北京:北京理工大学出版社)]

    [3]

    [3]Li Z P 1993 Classical and quantal dynamics of constrained systems and Their symmetrical properties (Beijing: Beijing Polytechnic University press) (in Chinese )[李子平1993 经典和量子约束系统及其对称性质(北京:北京工业大学出版社)]

    [4]

    [4]Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems(Beijing:Science Press)(in Chinese)[梅凤翔 1999 李群和李代数对约束力学系统的应用(北京:科学出版社)]

    [5]

    [5]Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanics Systems (Beijing: Beijing Institute of Technology Press)(in Chinese)[梅凤翔2004约束力学系统的对称性与守恒量(北京:北京理工大学出版社)]

    [6]

    [6]Luo S K, Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese)[罗绍凯、张永发 2008约束系统动力学研究进展(北京:科学出版社)]

    [7]

    [7Hojman S A 1992 J. Phys.A:Math. Gen. 25 L291

    [8]

    [8]Mei F X 2000 J. Beijing Institute of Technology 9 120

    [9]

    [9]Mei F X, Shang M 2000 Acta Phys. Sin. 49 1901(in Chinese)[梅凤翔、尚玫 2000 物理学报 49 1901]

    [10]

    ]Mei F X, Xu X J , Zhang Y F 2004 Acta Mech. Sin. 20 668

    [11]

    ]Wang S Y, Mei F X 2001 Chin. Phys. 10 373

    [12]

    ]Qiao Y F, Zhao S H, Li R J 2004 Chin. Phys. 13 292

    [13]

    ]Xu X J, Mei F X, Qin M C 2004 Acta Phys. Sin. 53 4021(in Chinese) [许学军、梅凤翔、秦茂昌2004 物理学报 53 4021]

    [14]

    ]Fang J H, Xue Q Z, Zhao S Q 2002 Acta Phys. Sin. 51 2183(in Chinese) [方建会、薛庆忠、赵嵩卿 2002 物理学报 51 2183]

    [15]

    ]Zhang J, Fang J H, Chen P S 2005 Acta Armamentarii 26 228(in Chinese) [张军、方建会、陈培胜2005 兵工学报 26 228]

    [16]

    ]Hu C L, Xie J F 2007 J.Hulunbeier Coollege 15 83(in Chinese) [胡楚勒、解加芳 2007 呼伦贝尔学院学报15 83]

    [17]

    ]Jia L Q, Luo S K, Zhang Y Y 2008 Acta Phys.Sin. 57 2006 (in Chinese)[贾利群、罗绍凯、张耀宇 2008 物理学报 57 2006]

    [18]

    ]Jia L Q, Zhang Y Y, Luo S K, Cui J C 2009 Acta Phys.Sin. 58 2141 (in Chinese)[贾利群、张耀宇、罗绍凯、崔金超 2009 物理学报 58 2141]

    [19]

    ]Cui J C, Zhang Y Y, Jia L Q 2009 Chin. Phys B 18 1731

    [20]

    ]Cui J C,Jia L Q and Zhang Y Y 2009 Commun. Theor. Phys. 52 7

    [21]

    ]Mei F X1984 Acta Mech. Sin. 16 596 (in Chinese )[梅凤翔 1984力学学报 16 596]

  • [1]

    [1]Noether A E 1918 Nachr. Akad. Wiss. Gttingen. Math. Phys. KI 235

    [2]

    [2]Mei F X, Liu D and Luo Y 1991 Advanced Analytical Mechanics(Beijing: Beijing Institute of Technology Press)(in Chinese)[梅凤翔、刘端、罗勇1991高等分析力学(北京:北京理工大学出版社)]

    [3]

    [3]Li Z P 1993 Classical and quantal dynamics of constrained systems and Their symmetrical properties (Beijing: Beijing Polytechnic University press) (in Chinese )[李子平1993 经典和量子约束系统及其对称性质(北京:北京工业大学出版社)]

    [4]

    [4]Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems(Beijing:Science Press)(in Chinese)[梅凤翔 1999 李群和李代数对约束力学系统的应用(北京:科学出版社)]

    [5]

    [5]Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanics Systems (Beijing: Beijing Institute of Technology Press)(in Chinese)[梅凤翔2004约束力学系统的对称性与守恒量(北京:北京理工大学出版社)]

    [6]

    [6]Luo S K, Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese)[罗绍凯、张永发 2008约束系统动力学研究进展(北京:科学出版社)]

    [7]

    [7Hojman S A 1992 J. Phys.A:Math. Gen. 25 L291

    [8]

    [8]Mei F X 2000 J. Beijing Institute of Technology 9 120

    [9]

    [9]Mei F X, Shang M 2000 Acta Phys. Sin. 49 1901(in Chinese)[梅凤翔、尚玫 2000 物理学报 49 1901]

    [10]

    ]Mei F X, Xu X J , Zhang Y F 2004 Acta Mech. Sin. 20 668

    [11]

    ]Wang S Y, Mei F X 2001 Chin. Phys. 10 373

    [12]

    ]Qiao Y F, Zhao S H, Li R J 2004 Chin. Phys. 13 292

    [13]

    ]Xu X J, Mei F X, Qin M C 2004 Acta Phys. Sin. 53 4021(in Chinese) [许学军、梅凤翔、秦茂昌2004 物理学报 53 4021]

    [14]

    ]Fang J H, Xue Q Z, Zhao S Q 2002 Acta Phys. Sin. 51 2183(in Chinese) [方建会、薛庆忠、赵嵩卿 2002 物理学报 51 2183]

    [15]

    ]Zhang J, Fang J H, Chen P S 2005 Acta Armamentarii 26 228(in Chinese) [张军、方建会、陈培胜2005 兵工学报 26 228]

    [16]

    ]Hu C L, Xie J F 2007 J.Hulunbeier Coollege 15 83(in Chinese) [胡楚勒、解加芳 2007 呼伦贝尔学院学报15 83]

    [17]

    ]Jia L Q, Luo S K, Zhang Y Y 2008 Acta Phys.Sin. 57 2006 (in Chinese)[贾利群、罗绍凯、张耀宇 2008 物理学报 57 2006]

    [18]

    ]Jia L Q, Zhang Y Y, Luo S K, Cui J C 2009 Acta Phys.Sin. 58 2141 (in Chinese)[贾利群、张耀宇、罗绍凯、崔金超 2009 物理学报 58 2141]

    [19]

    ]Cui J C, Zhang Y Y, Jia L Q 2009 Chin. Phys B 18 1731

    [20]

    ]Cui J C,Jia L Q and Zhang Y Y 2009 Commun. Theor. Phys. 52 7

    [21]

    ]Mei F X1984 Acta Mech. Sin. 16 596 (in Chinese )[梅凤翔 1984力学学报 16 596]

  • [1] 张芳, 张耀宇, 薛喜昌, 贾利群. 相对运动完整系统Appell方程Mei对称性的共形不变性与守恒量. 物理学报, 2015, 64(13): 134501. doi: 10.7498/aps.64.134501
    [2] 徐超, 李元成. 奇异变质量单面非完整系统Nielsen方程的Noether-Lie对称性与守恒量. 物理学报, 2013, 62(17): 171101. doi: 10.7498/aps.62.171101
    [3] 徐超, 李元成. 奇异 Chetaev型非完整系统Nielsen方程的Lie-Mei对称性与守恒量. 物理学报, 2013, 62(12): 120201. doi: 10.7498/aps.62.120201
    [4] 郑世旺, 王建波, 陈向炜, 李彦敏, 解加芳. 变质量非完整系统Tznoff方程的Lie 对称性与其导出的守恒量. 物理学报, 2012, 61(11): 111101. doi: 10.7498/aps.61.111101
    [5] 王肖肖, 孙现亭, 张美玲, 解银丽, 贾利群. Chetaev型约束的相对运动动力学系统Nielsen方程的Noether对称性与Noether守恒量. 物理学报, 2012, 61(6): 064501. doi: 10.7498/aps.61.064501
    [6] 王肖肖, 张美玲, 韩月林, 贾利群. Chetaev型非完整约束相对运动动力学系统Nielsen方程的Mei对称性和Mei守恒量. 物理学报, 2012, 61(20): 200203. doi: 10.7498/aps.61.200203
    [7] 贾利群, 孙现亭, 张美玲, 王肖肖, 解银丽. Nielsen方程Mei对称性导致的一种新型守恒量. 物理学报, 2011, 60(8): 084501. doi: 10.7498/aps.60.084501
    [8] 解银丽, 贾利群, 杨新芳. 相对运动动力学系统Nielsen方程的Lie对称性与Hojman守恒量. 物理学报, 2011, 60(3): 030201. doi: 10.7498/aps.60.030201
    [9] 郑世旺, 解加芳, 陈向炜, 杜雪莲. 完整系统Tzénoff方程的Mei对称性直接导致的另一种守恒量. 物理学报, 2010, 59(8): 5209-5212. doi: 10.7498/aps.59.5209
    [10] 李元成, 夏丽莉, 王小明, 刘晓巍. 完整系统Appell方程的Lie-Mei对称性与守恒量. 物理学报, 2010, 59(6): 3639-3642. doi: 10.7498/aps.59.3639
    [11] 贾利群, 崔金超, 张耀宇, 罗绍凯. Chetaev型约束力学系统Appell方程的Lie对称性与守恒量. 物理学报, 2009, 58(1): 16-21. doi: 10.7498/aps.58.16
    [12] 贾利群, 崔金超, 罗绍凯, 张耀宇. 事件空间中单面非Chetaev型非完整系统Nielsen方程的Mei对称性与Mei守恒量. 物理学报, 2009, 58(4): 2141-2146. doi: 10.7498/aps.58.2141
    [13] 李元成, 夏丽莉, 王小明. 具有非Chetaev型非完整约束的机电系统的统一对称性. 物理学报, 2009, 58(10): 6732-6736. doi: 10.7498/aps.58.6732
    [14] 贾利群, 罗绍凯, 张耀宇. 非完整系统Nielsen方程的Mei对称性与Mei守恒量. 物理学报, 2008, 57(4): 2006-2010. doi: 10.7498/aps.57.2006
    [15] 葛伟宽. 一类完整系统的Mei对称性与守恒量. 物理学报, 2008, 57(11): 6714-6717. doi: 10.7498/aps.57.6714
    [16] 郑世旺, 贾利群. 非完整系统Tzénoff方程的Mei对称性和守恒量. 物理学报, 2007, 56(2): 661-665. doi: 10.7498/aps.56.661
    [17] 李元成, 夏丽莉, 赵 伟, 后其宝, 王 静, 荆宏星. 机电系统的统一对称性. 物理学报, 2007, 56(9): 5037-5040. doi: 10.7498/aps.56.5037
    [18] 丁 宁, 方建会, 张鹏玉, 王 鹏. Poincaré-Chetaev方程的统一对称性. 物理学报, 2006, 55(12): 6197-6202. doi: 10.7498/aps.55.6197
    [19] 许学军, 梅凤翔. 准坐标下一般完整系统的统一对称性. 物理学报, 2005, 54(12): 5521-5524. doi: 10.7498/aps.54.5521
    [20] 乔永芬, 张耀良, 赵淑红. 完整非保守系统Raitzin正则运动方程的积分因子和守恒定理. 物理学报, 2002, 51(8): 1661-1665. doi: 10.7498/aps.51.1661
计量
  • 文章访问数:  5346
  • PDF下载量:  714
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-08-07
  • 修回日期:  2009-08-27
  • 刊出日期:  2010-05-15

完整系统Nielsen方程的统一对称性与守恒量

  • 1. (1)河南教育学院物理系,郑州 450046; (2)中国石油大学(华东)物理科学与技术学院,青岛 266555
    基金项目: 河南省教育厅自然科学基础研究项目(批准号:2009A140003)和河南教育学院骨干教师培养基金资助的课题.

摘要: 研究完整系统Nielsen方程的统一对称性与守恒量. 在完整系统Nielsen方程的基础上,首先给出了Nielsen方程的Noether对称性、Lie对称性和Mei对称性与守恒量,其次给出了Nielsen方程的统一对称性的定义和判据,得到Nielsen方程的统一对称性导致的Noether守恒量、Hojman守恒量和Mei守恒量. 举例说明结果的应用.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回