搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称方势阱中的激子及其与声子的相互作用

邓艳平 吕彬彬 田强

引用本文:
Citation:

非对称方势阱中的激子及其与声子的相互作用

邓艳平, 吕彬彬, 田强

Excitons and effects of phonons on excitons in asymmetric square quantum well

Deng Yan-Ping, Lü Bin-Bin, Tian Qiang
PDF
导出引用
  • 采用类LLP(Lee-Low-Pines)变换和分数维变分法,在讨论有限深非对称方势阱Ga1-xAlxAs/ GaAs/Ga0.7Al0.3As的分数维基础上,计算了其中激子的基态能量以及声子对其影响,随着势阱宽度增加,激子能量先减小后增大,出现一个最小值.讨论了一侧势垒高度变化对分数维、激子基态能量的影响,并发现声子作用使得激子能量明显增大.另外,非对称方势阱中的激子结合能随阱宽的减小而增
    By LLP(Lee-Low-Pines)-like transformation and fractional-dimension variational treatment, the ground-state energies of excitons confined in Ga1-xAlxAs/GaAs/Ga0.7Al0.3As asymmetric square quantum well and the influence of phonons are demonstrated. The exciton ground-state energy has a minimum value with the increasing well width. And we make clear the effects of the barrier height on the fractional dimension, exciton ground energy and binding energy. After taking into account of the interaction of exciton with LO-phonons, the values of the exciton ground-state energies increase remarkablely. Moreover, the exciton binding energy increases as the asymmetric well-width decreases or the barrier height increases.
    • 基金项目: 国家自然科学基金(批准号:10574011)资助的课题.
    [1]

    Zhang H, Liu L, Liu J J 2007 Acta Phys.Sin. 56 487(in Chinese) [张 红、刘 磊、刘建军 2007 物理学报 56 487]

    [2]

    Miller R C, Gossard A C, Kleinman D A, Munteanu O 1984 Phys. Rev. B 29 3470

    [3]

    Sen S, Capasso F, Gossard A C, Spah R A,Hutchinson A L, Chu S N G 1987 Appl. Phys. Lett. 51 1428

    [4]

    Chou S Y, Harris J S 1988 Appl. Phys. Lett. 52 1422

    [5]

    Yuh P, Wang K L 1988 Phys. Rev. B 38 13370

    [6]

    Kopf R F, Herman M H, Schnoes M L, Perley A P, Livescu G, Ohring M 1992 J. Appl. Phys. 71 5004

    [7]

    Liu C H,Chen C Y,Ma B K 2002 Acta Phys. Sin. 51 2022(in Chinese) [刘翠红、陈传誉、马本堃 2002 物理学报 51 2022]

    [8]

    Zhao F Q,Zhou B Q 2007 Acta Phys. Sin. 56 4856(in Chinese) [赵凤岐、周炳卿 2007 物理学报 56 4856]

    [9]

    Yu Y F, Xiao J L, Yin J W, Wang Z W 2008 Chin. Phys. B 17 2236

    [10]

    Sakiroglu S, Dogan U, Yildiz A, Akgungor K, Epik H, Ergun Y, Sari H, Sokmen I 2009 Chin. Phys. B 18 1578

    [11]

    Harouni M B, Roknizadeh R, Naderi M H 2009 Phys. Rev. B 79 165304

    [12]

    Mikhailov I D, Garcia L F, Marin J H 2008 Microelectron. J. 39 378

    [13]

    Senger R T, Bajaj K K 2003 Phys. Rev. B 68 045313

    [14]

    Wendler L, Haupt R 1987 Phys. Stat. Sol. (b) 143 487

    [15]

    Mori N, Ando T 1989 Phys. Rev. B 40 6275

    [16]

    Liang X X 1992 J. Phys.: Condens. Matter 4 9769

    [17]

    Zhao F Q, Liang X X 2002 Chin. Phys. Lett. 19 974

    [18]

    Miller R C, Kleinmann D A, Tsang W T, Gossard A C 1981 Phys. Rev. B 24 1134

    [19]

    Greene R L, Bajaj K K, Phelps D E 1984 Phys. Rev. B 29 1807

    [20]

    Miller D A, Chemla D S, Damen T D, Gossard A C, Wiegmann W, Wood T, Burrus C A 1985 Phys. Rev. B 32 1043

    [21]

    Zheng R S, Matsuura M 1997 Phys. Rev. B 56 2058

    [22]

    Andreani L C, Pasquarello A 1990 Phys. Rev. B 42 8928

    [23]

    Leavitt R P, Little J W 1990 Phys. Rev. B 42 11744

    [24]

    Antonelli A, Cen J, Bajaj K K 1996 Semicond. Sci. Technol. 11 74

    [25]

    Chen R, Bajaj K K 1997 Phys. Stat. Sol. (b) 199 417

    [26]

    Zhao G J, Liang X X, Ban S L 2003 Mod. Phys. Lett. B 17 863

    [27]

    He X F 1991 Phys. Rev. B 43 2063

    [28]

    Mathiew H, Lefebvre P, Christol P 1992 Phys. Rev. B 46 4092

    [29]

    de Dios-Leyva M, Bruno-Alfonso A, Matos-Abiague A, Oliveira L E 1997 J. Phys.: Condens. Matter 9 8477

    [30]

    Wang Z P, Liang X X, Wang X 2007 Phys J. B 59 41

    [31]

    Matos-Abiague A 2002 Semicond. Sci. Technol. 17 150

    [32]

    Mayes A, Yasan A, McClintock R, Shiell D, Darvish S R, Kung P, Razegh M 2004 Appl. Phys. Lett. 84 1046

    [33]

    Koga T, Nitta J, Akazaki T, Takayanagi H, 2002 Phys. Rev. Lett. 89 046801

    [34]

    Mathieu H, Lefebvre P, Christol P 1992 Phys. Rev. B 46 4092

    [35]

    Wang Z P, Liang X X 2005 Chin. Phys. Lett. 22 2367

    [36]

    Oshiro K, Akai K, Matsuura M 2002 Phys. Rev. B 66 153308

  • [1]

    Zhang H, Liu L, Liu J J 2007 Acta Phys.Sin. 56 487(in Chinese) [张 红、刘 磊、刘建军 2007 物理学报 56 487]

    [2]

    Miller R C, Gossard A C, Kleinman D A, Munteanu O 1984 Phys. Rev. B 29 3470

    [3]

    Sen S, Capasso F, Gossard A C, Spah R A,Hutchinson A L, Chu S N G 1987 Appl. Phys. Lett. 51 1428

    [4]

    Chou S Y, Harris J S 1988 Appl. Phys. Lett. 52 1422

    [5]

    Yuh P, Wang K L 1988 Phys. Rev. B 38 13370

    [6]

    Kopf R F, Herman M H, Schnoes M L, Perley A P, Livescu G, Ohring M 1992 J. Appl. Phys. 71 5004

    [7]

    Liu C H,Chen C Y,Ma B K 2002 Acta Phys. Sin. 51 2022(in Chinese) [刘翠红、陈传誉、马本堃 2002 物理学报 51 2022]

    [8]

    Zhao F Q,Zhou B Q 2007 Acta Phys. Sin. 56 4856(in Chinese) [赵凤岐、周炳卿 2007 物理学报 56 4856]

    [9]

    Yu Y F, Xiao J L, Yin J W, Wang Z W 2008 Chin. Phys. B 17 2236

    [10]

    Sakiroglu S, Dogan U, Yildiz A, Akgungor K, Epik H, Ergun Y, Sari H, Sokmen I 2009 Chin. Phys. B 18 1578

    [11]

    Harouni M B, Roknizadeh R, Naderi M H 2009 Phys. Rev. B 79 165304

    [12]

    Mikhailov I D, Garcia L F, Marin J H 2008 Microelectron. J. 39 378

    [13]

    Senger R T, Bajaj K K 2003 Phys. Rev. B 68 045313

    [14]

    Wendler L, Haupt R 1987 Phys. Stat. Sol. (b) 143 487

    [15]

    Mori N, Ando T 1989 Phys. Rev. B 40 6275

    [16]

    Liang X X 1992 J. Phys.: Condens. Matter 4 9769

    [17]

    Zhao F Q, Liang X X 2002 Chin. Phys. Lett. 19 974

    [18]

    Miller R C, Kleinmann D A, Tsang W T, Gossard A C 1981 Phys. Rev. B 24 1134

    [19]

    Greene R L, Bajaj K K, Phelps D E 1984 Phys. Rev. B 29 1807

    [20]

    Miller D A, Chemla D S, Damen T D, Gossard A C, Wiegmann W, Wood T, Burrus C A 1985 Phys. Rev. B 32 1043

    [21]

    Zheng R S, Matsuura M 1997 Phys. Rev. B 56 2058

    [22]

    Andreani L C, Pasquarello A 1990 Phys. Rev. B 42 8928

    [23]

    Leavitt R P, Little J W 1990 Phys. Rev. B 42 11744

    [24]

    Antonelli A, Cen J, Bajaj K K 1996 Semicond. Sci. Technol. 11 74

    [25]

    Chen R, Bajaj K K 1997 Phys. Stat. Sol. (b) 199 417

    [26]

    Zhao G J, Liang X X, Ban S L 2003 Mod. Phys. Lett. B 17 863

    [27]

    He X F 1991 Phys. Rev. B 43 2063

    [28]

    Mathiew H, Lefebvre P, Christol P 1992 Phys. Rev. B 46 4092

    [29]

    de Dios-Leyva M, Bruno-Alfonso A, Matos-Abiague A, Oliveira L E 1997 J. Phys.: Condens. Matter 9 8477

    [30]

    Wang Z P, Liang X X, Wang X 2007 Phys J. B 59 41

    [31]

    Matos-Abiague A 2002 Semicond. Sci. Technol. 17 150

    [32]

    Mayes A, Yasan A, McClintock R, Shiell D, Darvish S R, Kung P, Razegh M 2004 Appl. Phys. Lett. 84 1046

    [33]

    Koga T, Nitta J, Akazaki T, Takayanagi H, 2002 Phys. Rev. Lett. 89 046801

    [34]

    Mathieu H, Lefebvre P, Christol P 1992 Phys. Rev. B 46 4092

    [35]

    Wang Z P, Liang X X 2005 Chin. Phys. Lett. 22 2367

    [36]

    Oshiro K, Akai K, Matsuura M 2002 Phys. Rev. B 66 153308

  • [1] 乌云其木格, 辛伟, 额尔敦朝鲁. Rashba自旋-轨道耦合下二维双极化子的基态性质. 物理学报, 2016, 65(17): 177801. doi: 10.7498/aps.65.177801
    [2] 顾云风, 吴晓莉, 吴宏章. 三终端非对称夹角石墨烯纳米结的弹道热整流. 物理学报, 2016, 65(24): 248104. doi: 10.7498/aps.65.248104
    [3] 王文娟, 王海龙, 龚谦, 宋志棠, 汪辉, 封松林. 外电场对InGaAsP/InP量子阱内激子结合能的影响. 物理学报, 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [4] 李文生, 孙宝权. 电场调谐InAs量子点荷电激子光学跃迁. 物理学报, 2013, 62(4): 047801. doi: 10.7498/aps.62.047801
    [5] 周青春, 狄尊燕. 声子对隧穿量子点分子辐射场系统量子相位的影响. 物理学报, 2013, 62(13): 134206. doi: 10.7498/aps.62.134206
    [6] 袁宗强, 褚敏, 郑志刚. Fermi-Pasta-Ulam β 格点链系统能量载流子研究. 物理学报, 2013, 62(8): 080504. doi: 10.7498/aps.62.080504
    [7] 高当丽, 张翔宇, 张正龙, 徐良敏, 雷瑜, 郑海荣. 调控声子提高Tm3+掺杂体系的频率上转换荧光. 物理学报, 2009, 58(9): 6108-6112. doi: 10.7498/aps.58.6108
    [8] 丁凌云, 龚中良, 黄平. 声子摩擦能量耗散机理研究. 物理学报, 2009, 58(12): 8522-8528. doi: 10.7498/aps.58.8522
    [9] 金 华, 刘 舒, 张振中, 张立功, 郑著宏, 申德振. (CdZnTe, ZnSeTe)/ZnTe复合量子阱中激子隧穿过程. 物理学报, 2008, 57(10): 6627-6630. doi: 10.7498/aps.57.6627
    [10] 贺梦冬, 龚志强. 多层异质结构中的声学声子输运. 物理学报, 2007, 56(3): 1415-1421. doi: 10.7498/aps.56.1415
    [11] 张 红, 刘 磊, 刘建军. 对称GaAs/Al0.3Ga0.7As双量子阱中激子的束缚能. 物理学报, 2007, 56(1): 487-490. doi: 10.7498/aps.56.487
    [12] 熊 稳, 赵 铧. ZnO薄膜的激子能量和束缚能的计算. 物理学报, 2007, 56(2): 1061-1065. doi: 10.7498/aps.56.1061
    [13] 郑瑞伦. 圆柱状量子点量子导线复合系统的激子能量和电子概率分布. 物理学报, 2007, 56(8): 4901-4907. doi: 10.7498/aps.56.4901
    [14] 夏志林, 范正修, 邵建达. 激光作用下薄膜中的电子-声子散射速率. 物理学报, 2006, 55(6): 3007-3012. doi: 10.7498/aps.55.3007
    [15] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [16] 刘玉孝, 赵振华, 王永强, 陈玉红. 氦原子和类氦离子基态能量的变分计算及相对论修正. 物理学报, 2005, 54(6): 2620-2624. doi: 10.7498/aps.54.2620
    [17] 龙姝明, 冉启武, 熊晓军. 基态球谐振子的空间“塌陷”. 物理学报, 2005, 54(3): 1044-1047. doi: 10.7498/aps.54.1044
    [18] 徐 权, 田 强. 一维分子链中激子与声子的相互作用和呼吸子解 . 物理学报, 2004, 53(9): 2811-2815. doi: 10.7498/aps.53.2811
    [19] 龙姝明. 同调谐振子参数与基态能量的关系. 物理学报, 2002, 51(10): 2256-2255. doi: 10.7498/aps.51.2256
    [20] 陈 科, 赵二海, 孙 鑫, 付柔励. 高分子中激子和双激子的极化率(解析计算). 物理学报, 2000, 49(9): 1778-1785. doi: 10.7498/aps.49.1778
计量
  • 文章访问数:  5204
  • PDF下载量:  678
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-10-27
  • 修回日期:  2009-11-30
  • 刊出日期:  2010-07-15

非对称方势阱中的激子及其与声子的相互作用

  • 1. 北京师范大学物理系,北京 100875
    基金项目: 国家自然科学基金(批准号:10574011)资助的课题.

摘要: 采用类LLP(Lee-Low-Pines)变换和分数维变分法,在讨论有限深非对称方势阱Ga1-xAlxAs/ GaAs/Ga0.7Al0.3As的分数维基础上,计算了其中激子的基态能量以及声子对其影响,随着势阱宽度增加,激子能量先减小后增大,出现一个最小值.讨论了一侧势垒高度变化对分数维、激子基态能量的影响,并发现声子作用使得激子能量明显增大.另外,非对称方势阱中的激子结合能随阱宽的减小而增

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回