搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负偏压作用下染料敏化太阳电池界面及光电性能研究

陈双宏 翁坚 王利军 张昌能 黄阳 姜年权 戴松元

引用本文:
Citation:

负偏压作用下染料敏化太阳电池界面及光电性能研究

陈双宏, 翁坚, 王利军, 张昌能, 黄阳, 姜年权, 戴松元

The study of interface and photoelectric performance of dye-sensitized solar cells in the applied negative bias

Chen Shuang-Hong, Weng Jian, Wang Li-Jun, Zhang Chang-Neng, Huang Yang, Jiang Nian-Quan, Dai Song-Yuan
PDF
导出引用
  • 太阳电池组件由于局部电压不匹配,其中部分电池可能较长时间工作在负偏压状态下,从而影响电池光电性能.借助拉曼光谱、电化学阻抗谱和入射单色光量子效率(IPCE)等测试手段,研究长期负偏压作用下染料敏化太阳电池光电性能的变化及其影响机理.拉曼光谱研究结果表明:电池在1000 h负偏压作用下,电解质中阳离子(Li+)会向光阳极(TiO2电极)移动并嵌入TiO2薄膜中;长期负偏压作用还会致使TiO2/电解质界面阻抗增大和IPCE下降,导致电池开路电压升高和短路电流减小.通过加入苯并咪唑(BI)添加剂,经1000 h负偏压后电池的拉曼光谱实验表明,BI能在一定程度阻碍Li+的嵌入,电池具有较好的长期稳定性.不同负偏压下的老化实验进一步表明,通过加入添加剂能够使电池在长期负偏压下保持较好的稳定性.
    Dye-sensitized solar cell (DSC) modules are most likely to work for long time under negative bias due to the mismatch in the outdoor usage, which can obviously influence the cell performance. In this paper, the interface property of DSC under negative bias is investigated by Raman spectroscopy, electrochemical impedance spectroscopy and incident-photon-to-electron conversion efficiency (IPCE). The results of Raman spectroscopy indicate that the decreased peak intensity at 167 cm-1 (the oxidized state of N719 (D+)/ I3-) after 1000 h could be due to Li+ ions diffusing into the TiO2 electrode and partially being intercalated into the TiO2 film. It is also found that the increased recombination resistance in the interface of TiO2/electrolyte resultes in the improved open-circuit voltage and the decreased IPCE values, leading to reduced short-circuit current for DSC with base electrolyte under the long-term negative bias. However, when BI is added into the base electrolyte, the Raman spectrum shows no significant change and that the cell efficiency remains stable after 1000 h. The reason is that BI could prevent Li+ ions from being intercalated into the TiO2 film. It is proven by the further experiments where the DSC with BI exhibits better stability under different negative biases.
    • 基金项目: 国家重点基础研究发展计划(批准号:2011CBA00700)、国家高技术研究发展计划(批准号:2009AA050603)、中国科学院知识创新工程重要方向性项目(批准号:KGCX2-YW-326)资助的课题.
    [1]

    Oregan B, Gratzel M 1991 Nature 353 737

    [2]

    Chen C Y,Wang M K,Li J Y,Pootrakulchote N,Alibabaei L,Ngoc-le C,Decoppet J D,Tsai J H,Gratzel C,Wu C G,Zakeeruddin S M,Gratzel M 2009 ACS Nano. 3 3103

    [3]
    [4]

    Gratzel M 2004 J. Photochem. Photobiol. A 164 3

    [5]
    [6]
    [7]

    Hu L H, Dai S Y, Wang K J 2005 Acta Phys. Sin. 54 1914 (in Chinese) [胡林华、戴松元、王孔嘉 2005 物理学报 54 1914]

    [8]

    Gratzel M 2005 Chem. Lett. 34 8

    [9]
    [10]
    [11]

    Wang Q, Ito S, Gratzel M, Fabregat-Santiago F, Mora-Sero I, Bisquert J, Bessho T, Imai H 2006 J. Phys. Chem. B 110 25210

    [12]
    [13]

    Dai S Y, Wang K J, Weng J, Sui Y F, Huang Y, Xiao S F, Chen S H, Hu L H, Kong F T, Pan X, Shi C W, Guo L 2005 Sol. Energy Mater. Sol. Cells 85 447

    [14]
    [15]

    Okada K, Matsui H, Kawashima T, Ezure T, Tanabe N 2004 J. Photochem. Photobiol. A 164 193

    [16]

    Hinsch A, Kroon J M, Kern R, Uhlendorf I, Holzbock J, Meyer A, Ferber J 2001 Prog. Photovolt.: Res. Appl. 9 425

    [17]
    [18]
    [19]

    Harikisun R, Desilvestro H 2011 Sol. Energy 85 1179

    [20]

    Wheatley M G, McDonagh A M, Brungs M P, Chaplin R P, Sizgek E 2003 Sol. Energy Mater. Sol. Cells 76 175

    [21]
    [22]
    [23]

    Sastrawan R, Renz J, Prahl C, Beier J, Hinsch A, Kern R 2006 J. Photochem. Photobiol. A 178 33

    [24]

    Hu L H, Dai S Y, Wang K J 2003 Acta Phys. Sin. 52 2135 (in Chinese) [胡林华、戴松元、王孔嘉 2003 物理学报 52 2135]

    [25]
    [26]
    [27]

    Nazeeruddin M K, Pechy P, Renouard T, Zakeeruddin S M, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon G B, Bignozzi C A, Gratzel M 2001 J. Am. Chem. Soc. 123 1613

    [28]

    Shi C W, Dai S Y, Wang K J, Guo L, Pan X, Kong F T, Hu L H 2005 Acta Phys. Chim. Sin. 21 534 (in Chinese) [史成武、戴松元、王孔嘉、郭 力、潘 旭、孔凡太、胡林华 2005 物理化学学报 21 534]

    [29]
    [30]

    Stergiopoulos T, Bernard M C, Goff A H L, Falaras P 2004 Coord. Chem. Rev. 248 1407

    [31]
    [32]
    [33]

    Kopidakis N, Benkstein K D, van de Lagemaat J, Frank A J 2003 J. Phys. Chem. B 107 11307

    [34]
    [35]

    van de Krol R, Goossens A, Meulenkamp E A 2001 J. Appl. Phys. 90 2235

    [36]

    Nakade S, Kanzaki T, Kubo W, Kitamura T, Wada Y, Yanagida S 2005 J. Phys. Chem. B 109 3480

    [37]
  • [1]

    Oregan B, Gratzel M 1991 Nature 353 737

    [2]

    Chen C Y,Wang M K,Li J Y,Pootrakulchote N,Alibabaei L,Ngoc-le C,Decoppet J D,Tsai J H,Gratzel C,Wu C G,Zakeeruddin S M,Gratzel M 2009 ACS Nano. 3 3103

    [3]
    [4]

    Gratzel M 2004 J. Photochem. Photobiol. A 164 3

    [5]
    [6]
    [7]

    Hu L H, Dai S Y, Wang K J 2005 Acta Phys. Sin. 54 1914 (in Chinese) [胡林华、戴松元、王孔嘉 2005 物理学报 54 1914]

    [8]

    Gratzel M 2005 Chem. Lett. 34 8

    [9]
    [10]
    [11]

    Wang Q, Ito S, Gratzel M, Fabregat-Santiago F, Mora-Sero I, Bisquert J, Bessho T, Imai H 2006 J. Phys. Chem. B 110 25210

    [12]
    [13]

    Dai S Y, Wang K J, Weng J, Sui Y F, Huang Y, Xiao S F, Chen S H, Hu L H, Kong F T, Pan X, Shi C W, Guo L 2005 Sol. Energy Mater. Sol. Cells 85 447

    [14]
    [15]

    Okada K, Matsui H, Kawashima T, Ezure T, Tanabe N 2004 J. Photochem. Photobiol. A 164 193

    [16]

    Hinsch A, Kroon J M, Kern R, Uhlendorf I, Holzbock J, Meyer A, Ferber J 2001 Prog. Photovolt.: Res. Appl. 9 425

    [17]
    [18]
    [19]

    Harikisun R, Desilvestro H 2011 Sol. Energy 85 1179

    [20]

    Wheatley M G, McDonagh A M, Brungs M P, Chaplin R P, Sizgek E 2003 Sol. Energy Mater. Sol. Cells 76 175

    [21]
    [22]
    [23]

    Sastrawan R, Renz J, Prahl C, Beier J, Hinsch A, Kern R 2006 J. Photochem. Photobiol. A 178 33

    [24]

    Hu L H, Dai S Y, Wang K J 2003 Acta Phys. Sin. 52 2135 (in Chinese) [胡林华、戴松元、王孔嘉 2003 物理学报 52 2135]

    [25]
    [26]
    [27]

    Nazeeruddin M K, Pechy P, Renouard T, Zakeeruddin S M, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon G B, Bignozzi C A, Gratzel M 2001 J. Am. Chem. Soc. 123 1613

    [28]

    Shi C W, Dai S Y, Wang K J, Guo L, Pan X, Kong F T, Hu L H 2005 Acta Phys. Chim. Sin. 21 534 (in Chinese) [史成武、戴松元、王孔嘉、郭 力、潘 旭、孔凡太、胡林华 2005 物理化学学报 21 534]

    [29]
    [30]

    Stergiopoulos T, Bernard M C, Goff A H L, Falaras P 2004 Coord. Chem. Rev. 248 1407

    [31]
    [32]
    [33]

    Kopidakis N, Benkstein K D, van de Lagemaat J, Frank A J 2003 J. Phys. Chem. B 107 11307

    [34]
    [35]

    van de Krol R, Goossens A, Meulenkamp E A 2001 J. Appl. Phys. 90 2235

    [36]

    Nakade S, Kanzaki T, Kubo W, Kitamura T, Wada Y, Yanagida S 2005 J. Phys. Chem. B 109 3480

    [37]
  • [1] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构. 物理学报, 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [2] 姚鑫, 丁艳丽, 张晓丹, 赵颖. 钙钛矿太阳电池综述. 物理学报, 2015, 64(3): 038805. doi: 10.7498/aps.64.038805
    [3] 姜玲, 张昌能, 丁勇, 莫立娥, 黄阳, 胡林华, 戴松元. 纳米TiO2颗粒/亚微米球多层结构薄膜内电荷传输性能研究. 物理学报, 2015, 64(1): 017301. doi: 10.7498/aps.64.017301
    [4] 刘长文, 周讯, 岳文瑾, 王命泰, 邱泽亮, 孟维利, 陈俊伟, 齐娟娟, 董超. 金属氧化物基杂化型聚合物太阳电池研究. 物理学报, 2015, 64(3): 038804. doi: 10.7498/aps.64.038804
    [5] 曾湘安, 艾斌, 邓幼俊, 沈辉. 硅片及其太阳电池的光衰规律研究. 物理学报, 2014, 63(2): 028803. doi: 10.7498/aps.63.028803
    [6] 王坚强, 刘邦武, 夏洋, 徐征. 高效黑硅电池组件反光板角度的模拟研究. 物理学报, 2014, 63(1): 018802. doi: 10.7498/aps.63.018802
    [7] 刘伟庆, 寇东星, 胡林华, 戴松元. 染料敏化太阳电池内部光路折转对电子传输特性的影响. 物理学报, 2012, 61(16): 168201. doi: 10.7498/aps.61.168201
    [8] 吴宝山, 王琳琳, 汪咏梅, 马廷丽. 基于半经验模型对大面积染料敏化太阳电池性能影响因素的研究. 物理学报, 2012, 61(7): 078801. doi: 10.7498/aps.61.078801
    [9] 方昕, 沈文忠. 多晶硅中的氧碳行为及其对太阳电池转换效率的影响. 物理学报, 2011, 60(8): 088801. doi: 10.7498/aps.60.088801
    [10] 奚小网, 胡林华, 徐炜炜, 戴松元. TiCl4处理多孔薄膜对染料敏化太阳电池中电子传输特性影响研究. 物理学报, 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [11] 寇东星, 刘伟庆, 胡林华, 黄阳, 戴松元, 姜年权. 电极表面改性对染料敏化太阳电池性能影响的机理研究. 物理学报, 2010, 59(8): 5857-5862. doi: 10.7498/aps.59.5857
    [12] 黄阳, 戴松元, 陈双宏, 胡林华, 孔凡太, 寇东星, 姜年权. 大面积染料敏化太阳电池的串联阻抗特性研究. 物理学报, 2010, 59(1): 643-648. doi: 10.7498/aps.59.643
    [13] 蔡宏琨, 陶科, 王林申, 赵敬芳, 隋妍萍, 张德贤. 柔性衬底非晶硅薄膜太阳电池界面处理的研究. 物理学报, 2009, 58(11): 7921-7925. doi: 10.7498/aps.58.7921
    [14] 梁林云, 戴松元, 胡林华, 戴俊, 刘伟庆. TiO2颗粒尺寸对染料敏化太阳电池内电子输运特性影响研究. 物理学报, 2009, 58(2): 1338-1343. doi: 10.7498/aps.58.1338
    [15] 戴 俊, 胡林华, 刘伟庆, 戴松元. 纳米TiO2多孔薄膜电极平带电势的研究. 物理学报, 2008, 57(8): 5310-5315. doi: 10.7498/aps.57.5310
    [16] 梁林云, 戴松元, 方霞琴, 胡林华. 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究. 物理学报, 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [17] 翁 坚, 肖尚锋, 陈双宏, 戴松元. 大面积染料敏化太阳电池的实验研究. 物理学报, 2007, 56(6): 3602-3606. doi: 10.7498/aps.56.3602
    [18] 戴松元, 孔凡太, 胡林华, 史成武, 方霞琴, 潘 旭, 王孔嘉. 染料敏化纳米薄膜太阳电池实验研究. 物理学报, 2005, 54(4): 1919-1926. doi: 10.7498/aps.54.1919
    [19] 曾隆月, 戴松元, 王孔嘉, 史成武, 孔凡太, 胡林华, 潘 旭. 染料敏化纳米ZnO薄膜太阳电池机理初探. 物理学报, 2005, 54(1): 53-57. doi: 10.7498/aps.54.53
    [20] 徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘 旭, 王孔嘉. 电沉积处理与染料敏化纳米薄膜太阳电池的优化. 物理学报, 2005, 54(12): 5943-5948. doi: 10.7498/aps.54.5943
计量
  • 文章访问数:  3948
  • PDF下载量:  632
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-01-18
  • 修回日期:  2011-08-08
  • 刊出日期:  2011-06-05

负偏压作用下染料敏化太阳电池界面及光电性能研究

  • 1. 中国科学院等离子体物理研究所,中国科学院新型薄膜太阳电池重点实验室,合肥 230031;
  • 2. 温州大学物理与电子信息学院, 温州 325035
    基金项目: 国家重点基础研究发展计划(批准号:2011CBA00700)、国家高技术研究发展计划(批准号:2009AA050603)、中国科学院知识创新工程重要方向性项目(批准号:KGCX2-YW-326)资助的课题.

摘要: 太阳电池组件由于局部电压不匹配,其中部分电池可能较长时间工作在负偏压状态下,从而影响电池光电性能.借助拉曼光谱、电化学阻抗谱和入射单色光量子效率(IPCE)等测试手段,研究长期负偏压作用下染料敏化太阳电池光电性能的变化及其影响机理.拉曼光谱研究结果表明:电池在1000 h负偏压作用下,电解质中阳离子(Li+)会向光阳极(TiO2电极)移动并嵌入TiO2薄膜中;长期负偏压作用还会致使TiO2/电解质界面阻抗增大和IPCE下降,导致电池开路电压升高和短路电流减小.通过加入苯并咪唑(BI)添加剂,经1000 h负偏压后电池的拉曼光谱实验表明,BI能在一定程度阻碍Li+的嵌入,电池具有较好的长期稳定性.不同负偏压下的老化实验进一步表明,通过加入添加剂能够使电池在长期负偏压下保持较好的稳定性.

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回