搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si掺杂β-Ga2O3的第一性原理计算与实验研究

张易军 闫金良 赵刚 谢万峰

引用本文:
Citation:

Si掺杂β-Ga2O3的第一性原理计算与实验研究

张易军, 闫金良, 赵刚, 谢万峰

First-principles calculation and experimental study of Si-doped β-Ga2O3

Zhang Yi-Jun, Yan Jin-Liang, Zhao Gang, Xie Wan-Feng
PDF
导出引用
  • 采用基于密度泛函理论(DFT)的第一性原理平面波超软赝势(USPP)法, 在广义梯度近似(GGA)下计算了本征β-Ga2O3和Si掺杂β-Ga2O3的能带结构、电子态密度、差分电荷密度和光学特性. 在蓝宝石衬底(0001)晶面上用脉冲激光沉积(PLD)法制备了本征β-Ga2O3和Si掺杂β-Ga2O3薄膜, 测量了其吸收光谱和反射光
    By using the first-principles ultra-soft pseudo-potential (USP) approach of the plane-wave based upon density functional theory (DFT), the energy band structure, electron density of states, difference in charge density and optical properties of the intrinsic β-Ga2O3 and Si-doped β-Ga2O3 were calculated under generalized gradient approximation (GGA). The intrinsic β-Ga2O3 and Si-doped β-Ga2O3 films were deposited on sapphire (0001) substrates by pulsed laser deposition (PLD), the optical absorption spectra and reflectance spectra were measured. The results showed that the whole energy band moved to the low energy side, the conductivity was n-type, the optical band gap increased, the absorption edge shifted to short wavelength, and the reflectivity decreased. The calculation results are consistent with experimental data.
    • 基金项目: 国家自然科学基金 (批准号:10974077),山东省自然科学基金 (批准号: ZR2009GM035)和山东省高等学校科技计划项目(批准号:J10LA08)资助的课题.
    [1]

    Tippins H H 1965 Phys. Rev. 140 A316

    [2]

    Ueda U, Hosono H, Waseda R, Kawazoe H 1997 Appl. Phys. Lett. 71 933

    [3]

    58 2684 (in Chinese) [刘 强、程新路、杨向东、范勇恒 2009 物理学报 58 2684]

    [4]

    Kenji Y 2004 Solid. State. Commun. 131 739

    [5]

    Litimein F, Rached D, Khenata R, Baltache H 2009 J. Alloy. Compd. 20516 9

    [6]

    Hai B, Xu F Q, 2004 Chin. Phys. 13 2126

    [7]

    Ye H G, Chen G De, Zhu Y Z, Lü H M 2007 Chin. Phys. 16 3803

    [8]

    Guang Q P, Chang T X, Yong J D B, Wu T W, Jun X 2008 Scripta. Materialia. 58 943

    [9]

    Xing H Y, Fan G H, Zhang Y, Zhao D G 2009 Acta Phys. Sin. 58 450 (in Chinese) [邢海英、范广涵、章 勇、赵德刚 2009 物理学报 58 450]

    [10]

    Wang Z J, Li S C, Wang L Y 2009 Chin. Phys. B 18 2992

    [11]

    Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐 鑫、吕海峰、马春雨、赵纪军、张庆瑜2008物理学报 57 1066]

    [12]

    Yang Z J, Guo Y D, Li J, Liu J C, Dai W, Cheng X L, Yang X D 2010 Chin. Phys. B 19 077102

    [13]

    Shigeo O, Norihito S Z K, Naoki A, Masahiko T, Takamasa S, Kazuo N, Toetsu S 2008 Thin. Solid. Films. 516 5763

    [14]

    Víllora E G., Shimamura K, Yoshikawa Y, Ujiie T, Aoki K 2008 Appl. Phys. Lett. 92 202120

    [15]

    Kiyoshi S, Encarnación G. V, Takekazu U, Kazuo A 2008 Appl. Phys. Lett. 92 201914

    [16]

    M Yamaga 2003 Phys. Rev. B 68 155207

    [17]

    Takakura K, Koga D, Ohyama H, Rafi J M, Kayamoto Y, Shibuya M, Yamamoto H, Vanhellemont J 2009 Physica B 404 4854

    [18]

    He H Y, Orlando R, Miguel A, Blanco R P 2006 Phys. Rev. B 74 195123

    [19]

    Zhang J G, Xiao C Q, Wu F 2005 Journal. of Synthetic. Craystals 34 67 (in Chinese) [张俊刚、夏长泰、吴 锋. 裴广庆、徐 军 2005 人工晶体学报 34 67]

    [20]

    Xing H Y, Fan G H, Zhou T M 2009 Acta Phys. Sin. 58 3324 (in Chinese) [邢海英、范广涵、周天明2009 物理学报 58 3324]

    [21]

    Liu Q, Cheng X L, Yang X D, Fan Y H 2009 Acta Phys. Sin.

    [22]

    Deng Z H, Yan J F, Zhang F C, Wang X. W, Xu J P, Zhang Z Y 2007 Acta. Photonica Sinica 36 110

    [23]

    Keiji W, Masatoshi S, Hideaki T 1999 J. Electroanal. Chem. 473 250

    [24]

    Wang Q X, Xiong Z H, Rao J P, Dai J N, Le S P, Wang G P, Jiang F Y 2007 Chnese. Journal. of Semiconductors 28 698 (in Chinese) [万齐欣、熊志华、饶建平、戴江南、乐淑萍、王古平、江风益 2007 半导体学报 28 698]

    [25]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [26]

    Feng J, Xiao B, Chen J C, Zhou T C 2009 Solid State Sci. 11 259

    [27]

    Ouyang X F, Shi S I, Ouyang C Y, Jiang D Y, Liu D S, Ye Z Q, Lei M S 2007 Chin. Phys. 16 3042

    [28]

    Gagarin S G, Kolbanovskii Y A, Polak L S 1972 Theoretical And Experimental Chemistry 8 216

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [30]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748

    [31]

    Bnite L, gouurier D, Minot C J 1994 Solid State. Chem. 113 420

    [32]

    Albanesi E A, Sferco S J, Lefebvre I, Allan G, Hollinger G 1992 Phys. Rev. 46 13260

    [33]

    Xing H Y, Fan G H, Zhao D G, He M, Zhang Y, Zhou T M, 2008 Acta Phys. Sin. 57 6513 (in Chinese) [邢海英、范广涵、赵德刚、何 苗、章 勇、周天明 2008 物理学报 57 6513]

    [34]

    Yuan Y 2006 MS Thesis ( Zhejiang: Zhejiang University)(in Chinese) [袁 苑 2001 硕士论文(浙江: 浙江大学)]

    [35]

    Feng J, Xiao B, Chen J C, Zhou T C 2009 Solid State Communications 149 1569

    [36]

    Shen Y B, Zhou X, Xu M, Ding Y C, Duan M Y, Linghu R F, Zhu W J 2007 Acta Phys. Sin. 56 3440(in Chinese) [沈益斌、周 勋、徐 明、丁迎春、段满益、令狐荣锋、祝文军2007物理学报56 3440]

    [37]

    Chen K, Fan G. H, Zhang Y 2008 Acta. Phys. Sini. 57 1054 (in Chinese) [陈 琨、范广涵、章 勇 2008 物理学报57 1054]

  • [1]

    Tippins H H 1965 Phys. Rev. 140 A316

    [2]

    Ueda U, Hosono H, Waseda R, Kawazoe H 1997 Appl. Phys. Lett. 71 933

    [3]

    58 2684 (in Chinese) [刘 强、程新路、杨向东、范勇恒 2009 物理学报 58 2684]

    [4]

    Kenji Y 2004 Solid. State. Commun. 131 739

    [5]

    Litimein F, Rached D, Khenata R, Baltache H 2009 J. Alloy. Compd. 20516 9

    [6]

    Hai B, Xu F Q, 2004 Chin. Phys. 13 2126

    [7]

    Ye H G, Chen G De, Zhu Y Z, Lü H M 2007 Chin. Phys. 16 3803

    [8]

    Guang Q P, Chang T X, Yong J D B, Wu T W, Jun X 2008 Scripta. Materialia. 58 943

    [9]

    Xing H Y, Fan G H, Zhang Y, Zhao D G 2009 Acta Phys. Sin. 58 450 (in Chinese) [邢海英、范广涵、章 勇、赵德刚 2009 物理学报 58 450]

    [10]

    Wang Z J, Li S C, Wang L Y 2009 Chin. Phys. B 18 2992

    [11]

    Tang X, Lü H F, Ma C Y, Zhao J J, Zhang Q Y 2008 Acta Phys. Sin. 57 1066 (in Chinese) [唐 鑫、吕海峰、马春雨、赵纪军、张庆瑜2008物理学报 57 1066]

    [12]

    Yang Z J, Guo Y D, Li J, Liu J C, Dai W, Cheng X L, Yang X D 2010 Chin. Phys. B 19 077102

    [13]

    Shigeo O, Norihito S Z K, Naoki A, Masahiko T, Takamasa S, Kazuo N, Toetsu S 2008 Thin. Solid. Films. 516 5763

    [14]

    Víllora E G., Shimamura K, Yoshikawa Y, Ujiie T, Aoki K 2008 Appl. Phys. Lett. 92 202120

    [15]

    Kiyoshi S, Encarnación G. V, Takekazu U, Kazuo A 2008 Appl. Phys. Lett. 92 201914

    [16]

    M Yamaga 2003 Phys. Rev. B 68 155207

    [17]

    Takakura K, Koga D, Ohyama H, Rafi J M, Kayamoto Y, Shibuya M, Yamamoto H, Vanhellemont J 2009 Physica B 404 4854

    [18]

    He H Y, Orlando R, Miguel A, Blanco R P 2006 Phys. Rev. B 74 195123

    [19]

    Zhang J G, Xiao C Q, Wu F 2005 Journal. of Synthetic. Craystals 34 67 (in Chinese) [张俊刚、夏长泰、吴 锋. 裴广庆、徐 军 2005 人工晶体学报 34 67]

    [20]

    Xing H Y, Fan G H, Zhou T M 2009 Acta Phys. Sin. 58 3324 (in Chinese) [邢海英、范广涵、周天明2009 物理学报 58 3324]

    [21]

    Liu Q, Cheng X L, Yang X D, Fan Y H 2009 Acta Phys. Sin.

    [22]

    Deng Z H, Yan J F, Zhang F C, Wang X. W, Xu J P, Zhang Z Y 2007 Acta. Photonica Sinica 36 110

    [23]

    Keiji W, Masatoshi S, Hideaki T 1999 J. Electroanal. Chem. 473 250

    [24]

    Wang Q X, Xiong Z H, Rao J P, Dai J N, Le S P, Wang G P, Jiang F Y 2007 Chnese. Journal. of Semiconductors 28 698 (in Chinese) [万齐欣、熊志华、饶建平、戴江南、乐淑萍、王古平、江风益 2007 半导体学报 28 698]

    [25]

    Vanderbilt D 1990 Phys. Rev. B 41 7892

    [26]

    Feng J, Xiao B, Chen J C, Zhou T C 2009 Solid State Sci. 11 259

    [27]

    Ouyang X F, Shi S I, Ouyang C Y, Jiang D Y, Liu D S, Ye Z Q, Lei M S 2007 Chin. Phys. 16 3042

    [28]

    Gagarin S G, Kolbanovskii Y A, Polak L S 1972 Theoretical And Experimental Chemistry 8 216

    [29]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [30]

    Pack J D, Monkhorst H J 1977 Phys. Rev. B 16 1748

    [31]

    Bnite L, gouurier D, Minot C J 1994 Solid State. Chem. 113 420

    [32]

    Albanesi E A, Sferco S J, Lefebvre I, Allan G, Hollinger G 1992 Phys. Rev. 46 13260

    [33]

    Xing H Y, Fan G H, Zhao D G, He M, Zhang Y, Zhou T M, 2008 Acta Phys. Sin. 57 6513 (in Chinese) [邢海英、范广涵、赵德刚、何 苗、章 勇、周天明 2008 物理学报 57 6513]

    [34]

    Yuan Y 2006 MS Thesis ( Zhejiang: Zhejiang University)(in Chinese) [袁 苑 2001 硕士论文(浙江: 浙江大学)]

    [35]

    Feng J, Xiao B, Chen J C, Zhou T C 2009 Solid State Communications 149 1569

    [36]

    Shen Y B, Zhou X, Xu M, Ding Y C, Duan M Y, Linghu R F, Zhu W J 2007 Acta Phys. Sin. 56 3440(in Chinese) [沈益斌、周 勋、徐 明、丁迎春、段满益、令狐荣锋、祝文军2007物理学报56 3440]

    [37]

    Chen K, Fan G. H, Zhang Y 2008 Acta. Phys. Sini. 57 1054 (in Chinese) [陈 琨、范广涵、章 勇 2008 物理学报57 1054]

  • [1] 王坤, 乔英杰, 张晓红, 王晓东, 郑婷, 白成英, 张一鸣, 都时禹. 理想拉伸/剪切应变对U3Si2化学键键长及电荷密度分布影响的第一性原理研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20221210
    [2] 杜建宾, 张倩, 李奇峰, 唐延林. 基于密度泛函理论的C24H38O4分子外场效应研究. 物理学报, 2018, 67(6): 063102. doi: 10.7498/aps.67.20172022
    [3] 梁飞, 林哲帅, 吴以成. 基于第一性原理的新型非线性光学晶体探索. 物理学报, 2018, 67(11): 114203. doi: 10.7498/aps.67.20180189
    [4] 王雅静, 李桂霞, 王治华, 宫立基, 王秀芳. Imogolite类纳米管直径单分散性密度泛函理论研究. 物理学报, 2016, 65(4): 048101. doi: 10.7498/aps.65.048101
    [5] 饶雪, 王如志, 曹觉先, 严辉. 掺杂GaN/AlN超晶格第一性原理计算研究. 物理学报, 2015, 64(10): 107303. doi: 10.7498/aps.64.107303
    [6] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, 2015, 64(3): 033101. doi: 10.7498/aps.64.033101
    [7] 王江舵, 代建清, 宋玉敏, 张虎, 牛之慧. BaTiO3/SrTiO3(1:1)超晶格的晶格动力学、介电和压电性能的第一性原理研究. 物理学报, 2014, 63(12): 126301. doi: 10.7498/aps.63.126301
    [8] 解晓东, 郝玉英, 章日光, 王宝俊. Li掺杂8-羟基喹啉铝的密度泛函理论研究. 物理学报, 2012, 61(12): 127201. doi: 10.7498/aps.61.127201
    [9] 胡小颖, 田宏伟, 宋立军, 朱品文, 乔靓. Li-N, Li-2N共掺p型ZnO的第一性原理研究. 物理学报, 2012, 61(4): 047102. doi: 10.7498/aps.61.047102
    [10] 窦俊青, 康雪雅, 吐尔迪·吾买尔, 华宁, 韩英. Mn掺杂LiFePO4的第一性原理研究. 物理学报, 2012, 61(8): 087101. doi: 10.7498/aps.61.087101
    [11] 高巍, 巩水利, 朱嘉琦, 马国佳. 掺氮四面体非晶碳的第一性原理研究. 物理学报, 2011, 60(2): 027104. doi: 10.7498/aps.60.027104
    [12] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [13] 周晶晶, 陈云贵, 吴朝玲, 郑欣, 房玉超, 高涛. 新型轻质储氢材料的第一性原理原子尺度设计. 物理学报, 2009, 58(7): 4853-4861. doi: 10.7498/aps.58.4853
    [14] 杨冲, 杨春. Si(001)表面硅氧团簇原子与电子结构的第一性原理研究. 物理学报, 2009, 58(8): 5362-5369. doi: 10.7498/aps.58.5362
    [15] 祝国梁, 疏达, 戴永兵, 王俊, 孙宝德. Si在TiAl3中取代行为的第一性原理研究. 物理学报, 2009, 58(13): 210-S215. doi: 10.7498/aps.58.210
    [16] 张计划, 丁建文, 卢章辉. Co掺杂MgF2电子结构和光学特性的第一性原理研究. 物理学报, 2009, 58(3): 1901-1907. doi: 10.7498/aps.58.1901
    [17] 陈 琨, 范广涵, 章 勇. Mn掺杂ZnO光学特性的第一性原理计算. 物理学报, 2008, 57(2): 1054-1060. doi: 10.7498/aps.57.1054
    [18] 党宏丽, 王崇愚, 于 涛. γ-TiAl中Nb和Mo合金化效应的第一性原理研究. 物理学报, 2007, 56(5): 2838-2844. doi: 10.7498/aps.56.2838
    [19] 曾振华, 邓辉球, 李微雪, 胡望宇. O在Au(111)表面吸附的密度泛函理论研究. 物理学报, 2006, 55(6): 3157-3164. doi: 10.7498/aps.55.3157
    [20] 杨 春, 李言荣, 薛卫东, 陶佰万, 刘兴钊, 张 鹰, 黄 玮. α-Al2O3(0001)基片表面结构与能量研究. 物理学报, 2003, 52(9): 2268-2273. doi: 10.7498/aps.52.2268
计量
  • 文章访问数:  6686
  • PDF下载量:  1060
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-16
  • 修回日期:  2010-07-01
  • 刊出日期:  2011-03-15

Si掺杂β-Ga2O3的第一性原理计算与实验研究

  • 1. 鲁东大学物理学院,烟台 264025
    基金项目: 国家自然科学基金 (批准号:10974077),山东省自然科学基金 (批准号: ZR2009GM035)和山东省高等学校科技计划项目(批准号:J10LA08)资助的课题.

摘要: 采用基于密度泛函理论(DFT)的第一性原理平面波超软赝势(USPP)法, 在广义梯度近似(GGA)下计算了本征β-Ga2O3和Si掺杂β-Ga2O3的能带结构、电子态密度、差分电荷密度和光学特性. 在蓝宝石衬底(0001)晶面上用脉冲激光沉积(PLD)法制备了本征β-Ga2O3和Si掺杂β-Ga2O3薄膜, 测量了其吸收光谱和反射光

English Abstract

参考文献 (37)

目录

    /

    返回文章
    返回