搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In掺杂ZnO薄膜的制备及其白光发射机理

李世帅 张仲 黄金昭 冯秀鹏 刘如喜

引用本文:
Citation:

In掺杂ZnO薄膜的制备及其白光发射机理

李世帅, 张仲, 黄金昭, 冯秀鹏, 刘如喜

Preparation and mechanism of In-doped ZnO emitting white-light

Li Shi-Shuai, Zhang Zhong, Huang Jin-Zhao, Feng Xiu-Peng, Liu Ru-Xi
PDF
导出引用
  • 采用溶胶-凝胶法在Si衬底上制备了本征ZnO薄膜和In:(Zn+In)分别为5%,8%,10%的ZnO薄膜,对薄膜的晶相结构和光电性质进行了表征并在CIE-XYZ表色系统中计算了不同样品的色品坐标.结果表明:In掺入后ZnO薄膜的择优生长方向由(002)面变为(101)面且面间距变小,当In掺杂量为5%时,In原子完全替代Zn原子;薄膜的电阻率随In含量的增加出现先抑后扬的趋势;随着In的掺入光谱的紫外发射峰红移,并在670 nm左右出现一个新的峰值;In:(Zn+In)为5%样品具有白光发射特性.从第一
    Pure ZnO films and In/ZnO films are prepared by sol-gel process on Si substrates.The ratio of In/(Zn+In) are 5%, 8% and 10% separately. Crystal phase structures and photoelectric properties of these films are characterized and these chromaticity coordinates of different samples are also calculated in a CIE-XYZ color system. The results show that preferred growth direction of ZnO film changes from (002) plane to (001) plane and interplanar distance becomes shorter. When doping amount of In is 5%, Zn atoms are replaced by In atoms. Resistivity of the film first decreases and the increases with the increase of the amount of In. Ultraviolet emission peak of spectrum has a redshift; a new peak emerges at 670nm with the increase of In. The sample of 5% emits white-light.The band structures of pure and 5% doping content of film are calculated based on first principles.The mechanism of emitting white-light is discussed from the view point of additional energy level.
    • 基金项目: 山东省自然科学基金(批准号:Y2007G14),山东省科学技术发展计划项目(批准号:2009GG2003028,2010G0020423),济南大学博士基金(批准号:XBS0845),北京交通大学发光与光信息技术教育部重点实验室开放基金(批准号:2010LOI01)和济南大学科研基金(批准号:XKY1029)资助的课题.
    [1]

    Fan X M, Lian J S, Guo Z X 2005 Appl. Surf. Sci. 239 176

    [2]

    Zou J, Zhou S M, Xia C T 2005 J. Crys. Grow. 280 185

    [3]

    Huang J Z, Li S S, Feng X P 2010 Acta Phys.Sin. 59 5839 (in Chinese) [黄金昭、李世帅、冯秀鹏 2010 物理学报 59 5839]

    [4]

    Zhou X, Wang S Q, Lian G J, Xiong G C 2006 Chin. Phys. 15 199

    [5]

    Liu Z W, Gu J F, Fu W J, Sun C W, Li Y, Zhang Q Y 2006 Acta Phys. Sin. 55 5479 (in Chinese) [刘志文、谷建峰、付伟佳、孙成伟、李 勇、张庆瑜 2006 物理学报 55 5479]

    [6]

    Liu R B, Pan A L, Wang F F, Zou B S 2007 Chin. Phys. 16 1129

    [7]

    Gao L, Zhang J M 2009 Chin. Phys. B 18 4536

    [8]

    Lu S C, Song G L, Xiao Z Y, Zhang J H, Huang S H 2002 Chinese Journal of Luminescence 23 306 (in Chinese) [吕树臣、宋国立、肖芝雁、张家骅、黄世华 2002 发光学报 23 306]

    [9]

    Hao Y 2005 Optoelectronic Technology & Information 18 65 (in Chinese) [郝 云 2005 光电子技术与信息 18 65]

    [10]

    Guo H H, Lin Z H, Feng Z F, Lin L L, Zhou J Z 2009 J. Phys. Chem. C 113 12546

    [11]

    Guo C F, Ding X, Xu Y 2010 Journal of the American Ceramic Society 93 1708

    [12]

    Zhang J M, Zhao D L, Shen Z M 2010 High Performance Ceramics 6 434

    [13]

    Cao Y, Miao L, Tanemura S 2006 J. Appl. Phys. 45 623

    [14]

    Chris G, Vande W 2001 Physica B 308 310

    [15]

    Ravindra S, Mahesh K, Sudhir C 2007 J. Mater. Sci. 42 4675

    [16]

    Kim S, Wan I L, Hwang S K, Chongmu L 2007 J. Mater. Sci. 42 4845

    [17]

    Lyudmila N D, Lyudmila L T U, Yurn M J 2008 Mater. Sci. 43 2143

    [18]

    Lidia A, Gregorio B, Michele P J 2008 Phys. Chem. C 112 4049

    [19]

    Zhao Y, Fu Y J 2010 Acta Phys. Sin. 59 2679 (in Chinese) [赵 艳、蒋毅坚 2010 物理学报 59 2679]

    [20]

    Li S T, Cheng P F, Zhao L, Li J Y 2009 Acta Phys.Sin. 58 523 (in Chinese)[李盛涛、成鹏飞、赵 雷、李建英 2009 物理学报 58 523]

    [21]

    Li S S, Feng X P, Hang J J, Zhang Z, Tao Y Y 2010 Journal of Functional Materials 41 113[李世帅、冯秀鹏、黄金昭、张 仲、陶冶微 2010 功能材料 41 113]

    [22]

    Fu Z X, Guo C X, Lin B X 1998 Chin. Phys. Lett. 15 457

    [23]

    Seung Y B, Hyun C C, Chan W N, Jeunghee P 2005 Appl. Phys. Lett. 86 033102

    [24]

    Jie J S, Wang G Z, Han X H, Yu Q X, Liao Y, Li G P, Hou J G 2004 Chem. Phys. Lett. 387 466

    [25]

    Xu J, Huang S P, Wang Z S 2009 Solid State Commun. 149 527

  • [1]

    Fan X M, Lian J S, Guo Z X 2005 Appl. Surf. Sci. 239 176

    [2]

    Zou J, Zhou S M, Xia C T 2005 J. Crys. Grow. 280 185

    [3]

    Huang J Z, Li S S, Feng X P 2010 Acta Phys.Sin. 59 5839 (in Chinese) [黄金昭、李世帅、冯秀鹏 2010 物理学报 59 5839]

    [4]

    Zhou X, Wang S Q, Lian G J, Xiong G C 2006 Chin. Phys. 15 199

    [5]

    Liu Z W, Gu J F, Fu W J, Sun C W, Li Y, Zhang Q Y 2006 Acta Phys. Sin. 55 5479 (in Chinese) [刘志文、谷建峰、付伟佳、孙成伟、李 勇、张庆瑜 2006 物理学报 55 5479]

    [6]

    Liu R B, Pan A L, Wang F F, Zou B S 2007 Chin. Phys. 16 1129

    [7]

    Gao L, Zhang J M 2009 Chin. Phys. B 18 4536

    [8]

    Lu S C, Song G L, Xiao Z Y, Zhang J H, Huang S H 2002 Chinese Journal of Luminescence 23 306 (in Chinese) [吕树臣、宋国立、肖芝雁、张家骅、黄世华 2002 发光学报 23 306]

    [9]

    Hao Y 2005 Optoelectronic Technology & Information 18 65 (in Chinese) [郝 云 2005 光电子技术与信息 18 65]

    [10]

    Guo H H, Lin Z H, Feng Z F, Lin L L, Zhou J Z 2009 J. Phys. Chem. C 113 12546

    [11]

    Guo C F, Ding X, Xu Y 2010 Journal of the American Ceramic Society 93 1708

    [12]

    Zhang J M, Zhao D L, Shen Z M 2010 High Performance Ceramics 6 434

    [13]

    Cao Y, Miao L, Tanemura S 2006 J. Appl. Phys. 45 623

    [14]

    Chris G, Vande W 2001 Physica B 308 310

    [15]

    Ravindra S, Mahesh K, Sudhir C 2007 J. Mater. Sci. 42 4675

    [16]

    Kim S, Wan I L, Hwang S K, Chongmu L 2007 J. Mater. Sci. 42 4845

    [17]

    Lyudmila N D, Lyudmila L T U, Yurn M J 2008 Mater. Sci. 43 2143

    [18]

    Lidia A, Gregorio B, Michele P J 2008 Phys. Chem. C 112 4049

    [19]

    Zhao Y, Fu Y J 2010 Acta Phys. Sin. 59 2679 (in Chinese) [赵 艳、蒋毅坚 2010 物理学报 59 2679]

    [20]

    Li S T, Cheng P F, Zhao L, Li J Y 2009 Acta Phys.Sin. 58 523 (in Chinese)[李盛涛、成鹏飞、赵 雷、李建英 2009 物理学报 58 523]

    [21]

    Li S S, Feng X P, Hang J J, Zhang Z, Tao Y Y 2010 Journal of Functional Materials 41 113[李世帅、冯秀鹏、黄金昭、张 仲、陶冶微 2010 功能材料 41 113]

    [22]

    Fu Z X, Guo C X, Lin B X 1998 Chin. Phys. Lett. 15 457

    [23]

    Seung Y B, Hyun C C, Chan W N, Jeunghee P 2005 Appl. Phys. Lett. 86 033102

    [24]

    Jie J S, Wang G Z, Han X H, Yu Q X, Liao Y, Li G P, Hou J G 2004 Chem. Phys. Lett. 387 466

    [25]

    Xu J, Huang S P, Wang Z S 2009 Solid State Commun. 149 527

计量
  • 文章访问数:  6239
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-11-30
  • 修回日期:  2011-01-06
  • 刊出日期:  2011-09-15

In掺杂ZnO薄膜的制备及其白光发射机理

  • 1. 济南大学理学院,济南 250022
    基金项目: 山东省自然科学基金(批准号:Y2007G14),山东省科学技术发展计划项目(批准号:2009GG2003028,2010G0020423),济南大学博士基金(批准号:XBS0845),北京交通大学发光与光信息技术教育部重点实验室开放基金(批准号:2010LOI01)和济南大学科研基金(批准号:XKY1029)资助的课题.

摘要: 采用溶胶-凝胶法在Si衬底上制备了本征ZnO薄膜和In:(Zn+In)分别为5%,8%,10%的ZnO薄膜,对薄膜的晶相结构和光电性质进行了表征并在CIE-XYZ表色系统中计算了不同样品的色品坐标.结果表明:In掺入后ZnO薄膜的择优生长方向由(002)面变为(101)面且面间距变小,当In掺杂量为5%时,In原子完全替代Zn原子;薄膜的电阻率随In含量的增加出现先抑后扬的趋势;随着In的掺入光谱的紫外发射峰红移,并在670 nm左右出现一个新的峰值;In:(Zn+In)为5%样品具有白光发射特性.从第一

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回