搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环面黑洞的热力学函数

管韵 王波波

引用本文:
Citation:

环面黑洞的热力学函数

管韵, 王波波
cstr: 32037.14.aps.70.20212370

Thermodynamic functions of toroidal black holes

Guan Yun, Wang Bo-Bo
cstr: 32037.14.aps.70.20212370
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文把宇宙学常数看成与压强相当的动力学变量, 研究了环面黑洞的热力学函数. 计算得到环面黑洞的状态方程, 环面黑洞的Smarr关系. 然后通过计算其欧氏作用量得到了吉布斯函数, 并进一步求得环面黑洞的自由能、内能和热力学焓, 以及环面黑洞的定压热容和定容热容. 结果表明: 环面黑洞没有范德瓦耳斯型的相变. 环面黑洞的定压热容大于零, 定容热容等于零, 故是一个稳定的热力学系统.
    The thermodynamic functions of toroidal black holes are investigated in this paper by taking the cosmological constant as a dynamic variable equivalent to the pressure. The equation of state and the Smarr relation of a toroidal black hole are given. Then, the Gibbs function is obtained by calculating the Euclidian action. Further we study other thermodynamic functions of the toroidal black hole, such as free energy, internal energy, and thermodynamic enthalpy. The heat capacity of the toroidal black hole at constant pressure and constant volume is obtained. The results show that toroidal black holes have no van der Waals type phase transition. Toroidal black hole is a stable thermodynamic system because its heat capacity at constant pressure is greater than zero and its heat capacity at constant volume is equal to zero.
      通信作者: 王波波, bbwang@bjtu.edu.cn
      Corresponding author: Wang Bo-Bo, bbwang@bjtu.edu.cn
    [1]

    Bekenstein J D 1973 Phys. Rev. D 7 2333Google Scholar

    [2]

    Bekenstein J D 1974 Phys. Rev. D 9 3292Google Scholar

    [3]

    Hawking S W 1975 Commun. Math. Phys. 43 199Google Scholar

    [4]

    Caldarelli M M, Cognola G, Klemm D 2000 Class. Quantum Grav. 17 399Google Scholar

    [5]

    Kastor D, Ray S, Traschen J 2009 Class. Quantum Grav. 26 195011Google Scholar

    [6]

    Dolan B P 2011 Class. Quantum Grav. 28 125020Google Scholar

    [7]

    Dolan B P 2011 Class. Quantum Grav. 28 235017Google Scholar

    [8]

    Dolan B P 2011 Phys. Rev. D 84 127503Google Scholar

    [9]

    Cvetic M, Gibbons G W, Kubizňák D, Pope C N 2011 Phys. Rev. D 84 024037Google Scholar

    [10]

    Lu H, Pang Y, Pope C N, et al. 2012 Phys. Rev. D 86 044011Google Scholar

    [11]

    Gibbons G W, Hawking S W 1977 Phys. Rev. D 15 2752Google Scholar

    [12]

    Kubizňák D, Mann R B 2012 JHEP 7 1Google Scholar

    [13]

    Wang B B 2004 Gen. Relat. Gravit. 36 735Google Scholar

    [14]

    Wang B B 2008 Chin. Phys. B 17 467Google Scholar

    [15]

    Goenner H, Stachel J 1970 J. Math. Phys. 11 3358Google Scholar

    [16]

    Huang C G, Liang C B 1995 Phys. Lett. A 201 27Google Scholar

    [17]

    梁灿彬, 周彬 2009 微分几何入门与广义相对论(下册) 第二版 (北京: 科学出版社) 第116页

    Liang C B, Zhou B 2009 Introduction to Differential Geometry and General Relativity (Vol. 2) (2nd Ed.) (Beijing: Science Press) p116 (in Chinese)

    [18]

    Gauntlett J P, Myers R C, Townsend P K 1999 Class. Quant. Grav. 16 1Google Scholar

    [19]

    Townsend P. K. and Zamaklar M. 2001 Class. Quant. Grav. 18 5269Google Scholar

  • 图 1  环面黑洞的等温图

    Fig. 1.  Isotherm of toroidal black hole.

    图 2  环面黑洞吉布斯函数

    Fig. 2.  Gibbs function of toroidal black hole.

  • [1]

    Bekenstein J D 1973 Phys. Rev. D 7 2333Google Scholar

    [2]

    Bekenstein J D 1974 Phys. Rev. D 9 3292Google Scholar

    [3]

    Hawking S W 1975 Commun. Math. Phys. 43 199Google Scholar

    [4]

    Caldarelli M M, Cognola G, Klemm D 2000 Class. Quantum Grav. 17 399Google Scholar

    [5]

    Kastor D, Ray S, Traschen J 2009 Class. Quantum Grav. 26 195011Google Scholar

    [6]

    Dolan B P 2011 Class. Quantum Grav. 28 125020Google Scholar

    [7]

    Dolan B P 2011 Class. Quantum Grav. 28 235017Google Scholar

    [8]

    Dolan B P 2011 Phys. Rev. D 84 127503Google Scholar

    [9]

    Cvetic M, Gibbons G W, Kubizňák D, Pope C N 2011 Phys. Rev. D 84 024037Google Scholar

    [10]

    Lu H, Pang Y, Pope C N, et al. 2012 Phys. Rev. D 86 044011Google Scholar

    [11]

    Gibbons G W, Hawking S W 1977 Phys. Rev. D 15 2752Google Scholar

    [12]

    Kubizňák D, Mann R B 2012 JHEP 7 1Google Scholar

    [13]

    Wang B B 2004 Gen. Relat. Gravit. 36 735Google Scholar

    [14]

    Wang B B 2008 Chin. Phys. B 17 467Google Scholar

    [15]

    Goenner H, Stachel J 1970 J. Math. Phys. 11 3358Google Scholar

    [16]

    Huang C G, Liang C B 1995 Phys. Lett. A 201 27Google Scholar

    [17]

    梁灿彬, 周彬 2009 微分几何入门与广义相对论(下册) 第二版 (北京: 科学出版社) 第116页

    Liang C B, Zhou B 2009 Introduction to Differential Geometry and General Relativity (Vol. 2) (2nd Ed.) (Beijing: Science Press) p116 (in Chinese)

    [18]

    Gauntlett J P, Myers R C, Townsend P K 1999 Class. Quant. Grav. 16 1Google Scholar

    [19]

    Townsend P. K. and Zamaklar M. 2001 Class. Quant. Grav. 18 5269Google Scholar

计量
  • 文章访问数:  4767
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-22
  • 修回日期:  2022-01-24
  • 上网日期:  2022-05-24
  • 刊出日期:  2022-06-05

/

返回文章
返回