搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于层状多元金属氧化物的人造突触

刘强 倪尧 刘璐 孙林 刘甲奇 徐文涛

引用本文:
Citation:

基于层状多元金属氧化物的人造突触

刘强, 倪尧, 刘璐, 孙林, 刘甲奇, 徐文涛

Artificial synapses based on layered multi-component metal oxides

Liu Qiang, Ni Yao, Liu Lu, Sun Lin, Liu Jia-Qi, Xu Wen-Tao
PDF
HTML
导出引用
  • 神经形态电子学的迅速发展为生物神经系统仿生与模拟提供了有力支持. 具有三明治结构的两端人造突触电子器件不仅在结构上模拟了生物突触, 同时在类神经电脉冲信号的作用下可以完成对生物突触塑性的模拟与调控. 本文利用溶胶-凝胶法合成了具有层状结构的P3相Na2/3Ni1/3Mn2/3O2多元金属氧化物. 借助其晶体结构中Na+易于嵌入/脱出的特性, 设计并制备了基于Na2/3Ni1/3Mn2/3O2的离子迁移型人造突触, 器件在电脉冲信号的刺激下实现了对生物突触塑性的模拟, 并通过调校类神经尖峰脉冲信号, 成功对塑性行为进行了调控. 成功模拟了兴奋性突触后电流、双脉冲易化、脉冲数量依赖可塑性、脉冲频率依赖可塑性、脉冲电压幅值依赖可塑性和脉冲持续时间依赖可塑性. 同时, 器件实现了对摩斯电码指令的准确识别与响应.
    Neuromorphic electronics has received considerable attention recent years, and its basic functional units are synaptic electronic devices. A two-terminal artificial synapse with sandwiched structure emulates plasticity of the biological synapses under the action of nerve-like electrical impulse signals. In this paper, P3 phase Na2/3Ni1/3Mn2/3O2 multi-element metal oxides with layered structure are synthesized by sol-gel process. Owing to the fact that Na+ is easy to embed/eject into its crystal structure, an ion-migrating artificial synapse based on Na2/3Ni1/3Mn2/3O2 is designed and fabricated. The device emulates important synaptic plasticity, such as excitatory postsynaptic current, paired-pulse facilitation, spike-number dependent plasticity, spike-frequency dependent plasticity, spike-voltage amplitude dependent plasticity and spike-duration dependent plasticity. The device realizes the identification and response to Morse code commands.
      通信作者: 徐文涛, wentao@nankai.edu.cn
    • 基金项目: 国家杰出青年科学基金(批准号: T2125005)、天津市杰出青年科学基金(批准号: 19JCJQJC61000)和深圳市科技计划 (批准号: JCYJ20210324121002008)资助的课题.
      Corresponding author: Xu Wen-Tao, wentao@nankai.edu.cn
    • Funds: Project supported by the National Science Fund for Distinguished Young Scholars of China (Grant No. T2125005), the Tianjin Science Foundation for Distinguished Young Scholars, China (Grant No. 19JCJQJC61000), and the Shenzhen Science and Technology Project, China (Grant No. JCYJ20210324121002008).
    [1]

    Kuzum D, Yu S, Wong H P 2013 Nanotechnology 24 382001Google Scholar

    [2]

    Ling H, Koutsouras D A, Kazemzadeh S, Van De Burgt Y, Yan F, Gkoupidenis P 2020 Appl. Phys. Rev. 7 011307Google Scholar

    [3]

    Wang S, Zhang D W, Zhou P 2019 Sci. Bull. 64 1056Google Scholar

    [4]

    Wei H, Shi R, Sun L, Yu H, Gong J, Liu C, Xu Z, Ni Y, Xu J, Xu W 2021 Nat. Commun. 12 1Google Scholar

    [5]

    Choi D, Song M K, Sung T, Jang S, Kwon J Y 2020 Nano Energy 74 104912Google Scholar

    [6]

    Xia Q, Yang J J 2019 Nat. Mater. 18 309Google Scholar

    [7]

    Lu K, Li X, Sun Q, Pang X, Chen J, Minari T, Liu X, Song Y 2021 Mater. Horiz. 8 447Google Scholar

    [8]

    Sun J, Fu Y, Wan Q 2018 J. Phys. D: Appl. Phys. 51 314004Google Scholar

    [9]

    Gao J, Zheng Y, Yu W, Wang Y, Jin T, Pan X, Loh K P, Chen W 2021 Smart Mater. 2 88Google Scholar

    [10]

    Jeong B, Gkoupidenis P, Asadi K 2021 Adv. Mater. 33 2104034Google Scholar

    [11]

    Huang X, Li Q, Shi W, Liu K, Zhang Y, Liu Y, Wei X, Zhao Z, Guo Y, Liu Y 2021 Small 17 2102820Google Scholar

    [12]

    Wang C, Liu H, Chen L, Zhu H, Ji L, Sun Q Q, Zhang D W 2021 IEEE Electron Device Lett. 42 1555Google Scholar

    [13]

    Huang H, Liu L, Jiang C, Gong J, Ni Y, Xu Z, Wei H, Yu H, Xu W 2022 Neuromorph. Comput. Eng. 2 014004Google Scholar

    [14]

    Keene S T, Lubrano C, Kazemzadeh S, Melianas A, Tuchman Y, Polino G, Scognamiglio P, Cina L, Salleo A, van de Burgt Y, Santoro F 2020 Nat. Mater. 19 969Google Scholar

    [15]

    Ku B, Koo B, Sokolov A S, Ko M J, Choi C 2020 J. Alloys Compd. 833 155064Google Scholar

    [16]

    Yan Y, Chen Q, Wu X, Wang X, Li E, Ke Y, Liu Y, Chen H, Guo T 2020 ACS Appl. Mater. Interfaces 12 49915Google Scholar

    [17]

    Wang H, Zhao Q, Ni Z, Li Q, Liu H, Yang Y, Wang L, Ran Y, Guo Y, Hu W 2018 Adv. Mater. 30 1803961Google Scholar

    [18]

    Wei H, Yu H, Gong J, Li R, Han H, Ma M, Guo K, Xu W 2021 Mater. Chem. Front. 5 775Google Scholar

    [19]

    Gao J, Hao Y, Xu S, Rong X, Lu Q, Zhu C, Hu Y S 2021 Electrochim. Acta 399 139421Google Scholar

    [20]

    Wang D, Xu S, Wang J, Rong X, Zhou F, Wang L, Bai X, Lu B, Zhu C, Wang Y, Hu Y S 2022 Energy Storage Mater. 45 92Google Scholar

    [21]

    Kong L, Tang C, Peng H J, Huang J Q, Zhang Q 2020 Smart Mater. 1 e1007Google Scholar

    [22]

    Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Gu Q, Chou S 2019 J. Mater. Chem. A 7 9215Google Scholar

    [23]

    Zhang S Y, Guo Y J, Zhou Y N, Zhang X D, Niu Y B, Wang E H, Huang L B, An P F, Zhang J, Yang X A 2021 Small 17 2007236Google Scholar

    [24]

    Xian L, Li M, Qiu D, Qiu C, Yue C, Wang F, Yang R 2022 J. Alloys Compd. 905 163965Google Scholar

    [25]

    Song T, Kendrick E 2021 J. Phys. :Mater. 4 032004Google Scholar

    [26]

    Yu M, Liu F, Li J, Liu J, Zhang Y, Cheng F 2021 Adv. Energy Mater. 12 2100640Google Scholar

    [27]

    Yang X, Specht C G 2019 Front. Mol. Neurosci. 12 161Google Scholar

    [28]

    Lu L, Jia Y, Kirunda J B, Xu Y, Ge M, Pei Q, Yang L 2019 Nonlinear Dyn. 95 1673Google Scholar

    [29]

    Beckstead M J, Grandy D K, Wickman K, Williams J T 2004 Neuron 42 939Google Scholar

    [30]

    Shipman S L, Nicoll R A 2012 Proc. Natl. Acad. Sci. 109 19432Google Scholar

    [31]

    Hayashi A, Masuzawa N, Yubuchi S, Tsuji F, Hotehama C, Sakuda A, Tatsumisago M 2019 Nat. Commun. 10 1Google Scholar

    [32]

    Wei H, Yu H, Gong J, Zhang J, Han H, Ma M, Ni Y, Du Y, Zhang S, Liu L, Xu W 2019 ACS Appl. Electron. Mater. 2 316Google Scholar

    [33]

    Wen Y, Wang B, Zeng G, Nogita K, Ye D, Wang L 2015 Chem. Asian J. 10 661Google Scholar

    [34]

    Huang Q, Xu S, Xiao L, He P, Liu J, Yang Y, Wang P, Huang B, Wei W 2018 Inorg. Chem. 57 15584Google Scholar

    [35]

    Magee J C, Grienberger C 2020 Annu. Rev. Neurosci. 43 95Google Scholar

    [36]

    Li Y, Zhong Y, Zhang J, Xu L, Wang Q, Sun H, Tong H, Cheng X, Miao X 2014 Sci. Rep. 4 1Google Scholar

    [37]

    Van Rossum M C, Bi G Q, Turrigiano G G 2000 J. Neurosci. 20 8812Google Scholar

    [38]

    Fang L, Dai S, Zhao Y, Liu D, Huang J 2020 Adv. Electron. Mater. 6 1901217Google Scholar

    [39]

    Yang K, Yang L, Wang Z, Guo B, Song Z, Fu Y, Ji Y, Liu M, Zhao W, Liu X 2021 Adv. Energy Mater. 11 2100601Google Scholar

    [40]

    López J C 2001 Nat. Rev. Neurosci. 2 307Google Scholar

    [41]

    Gong J, Yu H, Zhou X, Wei H, Ma M, Han H, Zhang S, Ni Y, Li Y, Xu W 2020 Adv. Funct. Mater. 30 2005413Google Scholar

    [42]

    郭科鑫, 于海洋, 韩弘, 卫欢欢, 龚江东, 刘璐, 黄茜, 高清运, 徐文涛 2020 物理学报 69 238501Google Scholar

    Guo K X, Yu H Y, Han H, Wei H H, Gong J D, Liu L, Huang Q, Gao Q Y, Xu W T 2020 Acta Phys. Sin. 69 238501Google Scholar

    [43]

    Zhang S, Guo J, Liu L, Ruan H, Kong C, Yuan X, Zhang B, Gu G, Cui P, Cheng G 2022 Nano Energy 91 106660Google Scholar

    [44]

    Lee Y, Oh J Y, Xu W, Kim O, Kim T R, Kang J, Kim Y, Son D, Tok J B H, Park M J 2018 Sci. Adv. 4 eaat7387Google Scholar

    [45]

    Shim H, Jang S, Jang J G, Rao Z, Hong J I, Sim K, Yu C 2022 Nano Res. 15 758Google Scholar

    [46]

    Yang F, Sun L, Duan Q, Dong H, Jing Z, Yang Y, Li R, Zhang X, Hu W, Chua L 2021 Smart Mater. 2 99Google Scholar

  • 图 1  (a) 生物神经元及突触结构示意图; (b) 人工突触电子器件结构示意图; (c) P3相Na2/3Ni1/3Mn2/3O2结构示意图

    Fig. 1.  (a) Schematic diagram of biological neuron and synapse structure; (b) schematic diagram of artificial synaptic electronic device structure; (c) schematic diagram of the structure of P3 phase Na2/3Ni1/3Mn2/3O2.

    图 2  (a) Na2/3Ni1/3Mn2/3O2粉末X射线衍射测试图; (b) Na2/3Ni1/3Mn2/3O2粉末扫描电子显微镜测试图; (c) Na2/3Ni1/3Mn2/3O2粉末X射线能谱分析图; (d) Na2/3Ni1/3Mn2/3O2活性层扫描电子显微镜表面形貌测试图; (e) 底电极铝箔、Na2/3Ni1/3Mn2/3O2活性层与PEO-Na电解质薄层扫描电子显微镜断面形貌测试图; (f) Na2/3Ni1/3Mn2/3O2活性层原子力显微镜测试图

    Fig. 2.  (a) X-ray diffraction test diagram of Na2/3Ni1/3Mn2/3O2 powder; (b) scanning electron microscope test diagram of Na2/3Ni1/3Mn2/3O2 powder; (c) EDS test diagram of Na2/3Ni1/3Mn2/3O2 powder; (d) surface topography test diagram of Na2/3Ni1/3Mn2/3O2 active layer scanning electron microscope ; (e) bottom electrode Al foil, Na2/3Ni1/3Mn2/3O2 active layer and PEO-Na electrolyte thin layer scanning electron microscope cross-sectional morphology test diagram; (f) atom force microscope test diagram of Na2/3Ni1/3Mn2/3O2 active layer.

    图 3  (a) 单次阻变特性测试; (b) 连续50次阻变特性稳定能力测试; (c) 对器件施加单个幅值为0.2 V的电脉冲信号所产生的EPSC; (d) 对器件连续施加两个幅值为0.2 V的电脉冲信号所产生的PPF; 对器件施加多对时间间隔不同幅值为0.2 V的电脉冲信号所产生的(e) PPF以及(f) PPF指数

    Fig. 3.  (a) Single resistance characteristic test; (b) 50 consecutive tests of resistance characteristic stability; (c) EPSC generated by applying a single electrical pulse signal with an amplitude of 0.2 V to the device; (d) PPF generated by continuously applying two electrical pulse signals with an amplitude of 0.2 V to the device; (e) PPF and (f) PPF index generated by applying multiple pairs of electrical pulse signals with different amplitudes of 0.2 V to the device.

    图 4  对器件连续施加10个幅值为0.2 V的电脉冲信号所产生的 (a) SNDP以及(b) SNDP 指数; (c) 对器件施加幅值从0 V—4 V—0 V变化的10组电脉冲信号循环所产生的SVDP; 对器件施加多个脉冲宽度不同幅值为0.2 V的电脉冲信号所产生的(d) SDDP以及(e) SDDP 指数; (f) 对器件连续施加多组频率不同幅值为0.2 V的电脉冲信号所产生的SFDP

    Fig. 4.  (a) SNDP and (b) SNDP index generated by continuously applying 10 electrical pulse signals with an amplitude of 0.2 V to the device; (c) 10 groups of amplitudes varying from 0 V to 4 V to 0 V are applied to the device SVDP generated by electrical pulse signal cycle; (d) SDDP and (e) SDDP index generated by applying multiple electrical pulse signals with different pulse widths and amplitudes of 0.2 V to the device; (f) SFDP generated by continuously applying multiple groups of electrical pulse signals with the different frequencies and amplitudes of 0.2 V to the device.

    图 5  对器件施加内容为Na2/3 (a), Ni1/3 (b), Mn2/3 (c), O2 (d)的摩斯电码制式的电脉冲信号所产生的突触后电流响应

    Fig. 5.  Post-synaptic current response generated by applying Morse code electrical pulse signals with content of (a) Na2/3, (b) Ni1/3, (c) Mn2/3, (d) O2 to the device.

  • [1]

    Kuzum D, Yu S, Wong H P 2013 Nanotechnology 24 382001Google Scholar

    [2]

    Ling H, Koutsouras D A, Kazemzadeh S, Van De Burgt Y, Yan F, Gkoupidenis P 2020 Appl. Phys. Rev. 7 011307Google Scholar

    [3]

    Wang S, Zhang D W, Zhou P 2019 Sci. Bull. 64 1056Google Scholar

    [4]

    Wei H, Shi R, Sun L, Yu H, Gong J, Liu C, Xu Z, Ni Y, Xu J, Xu W 2021 Nat. Commun. 12 1Google Scholar

    [5]

    Choi D, Song M K, Sung T, Jang S, Kwon J Y 2020 Nano Energy 74 104912Google Scholar

    [6]

    Xia Q, Yang J J 2019 Nat. Mater. 18 309Google Scholar

    [7]

    Lu K, Li X, Sun Q, Pang X, Chen J, Minari T, Liu X, Song Y 2021 Mater. Horiz. 8 447Google Scholar

    [8]

    Sun J, Fu Y, Wan Q 2018 J. Phys. D: Appl. Phys. 51 314004Google Scholar

    [9]

    Gao J, Zheng Y, Yu W, Wang Y, Jin T, Pan X, Loh K P, Chen W 2021 Smart Mater. 2 88Google Scholar

    [10]

    Jeong B, Gkoupidenis P, Asadi K 2021 Adv. Mater. 33 2104034Google Scholar

    [11]

    Huang X, Li Q, Shi W, Liu K, Zhang Y, Liu Y, Wei X, Zhao Z, Guo Y, Liu Y 2021 Small 17 2102820Google Scholar

    [12]

    Wang C, Liu H, Chen L, Zhu H, Ji L, Sun Q Q, Zhang D W 2021 IEEE Electron Device Lett. 42 1555Google Scholar

    [13]

    Huang H, Liu L, Jiang C, Gong J, Ni Y, Xu Z, Wei H, Yu H, Xu W 2022 Neuromorph. Comput. Eng. 2 014004Google Scholar

    [14]

    Keene S T, Lubrano C, Kazemzadeh S, Melianas A, Tuchman Y, Polino G, Scognamiglio P, Cina L, Salleo A, van de Burgt Y, Santoro F 2020 Nat. Mater. 19 969Google Scholar

    [15]

    Ku B, Koo B, Sokolov A S, Ko M J, Choi C 2020 J. Alloys Compd. 833 155064Google Scholar

    [16]

    Yan Y, Chen Q, Wu X, Wang X, Li E, Ke Y, Liu Y, Chen H, Guo T 2020 ACS Appl. Mater. Interfaces 12 49915Google Scholar

    [17]

    Wang H, Zhao Q, Ni Z, Li Q, Liu H, Yang Y, Wang L, Ran Y, Guo Y, Hu W 2018 Adv. Mater. 30 1803961Google Scholar

    [18]

    Wei H, Yu H, Gong J, Li R, Han H, Ma M, Guo K, Xu W 2021 Mater. Chem. Front. 5 775Google Scholar

    [19]

    Gao J, Hao Y, Xu S, Rong X, Lu Q, Zhu C, Hu Y S 2021 Electrochim. Acta 399 139421Google Scholar

    [20]

    Wang D, Xu S, Wang J, Rong X, Zhou F, Wang L, Bai X, Lu B, Zhu C, Wang Y, Hu Y S 2022 Energy Storage Mater. 45 92Google Scholar

    [21]

    Kong L, Tang C, Peng H J, Huang J Q, Zhang Q 2020 Smart Mater. 1 e1007Google Scholar

    [22]

    Liu Q, Hu Z, Chen M, Zou C, Jin H, Wang S, Gu Q, Chou S 2019 J. Mater. Chem. A 7 9215Google Scholar

    [23]

    Zhang S Y, Guo Y J, Zhou Y N, Zhang X D, Niu Y B, Wang E H, Huang L B, An P F, Zhang J, Yang X A 2021 Small 17 2007236Google Scholar

    [24]

    Xian L, Li M, Qiu D, Qiu C, Yue C, Wang F, Yang R 2022 J. Alloys Compd. 905 163965Google Scholar

    [25]

    Song T, Kendrick E 2021 J. Phys. :Mater. 4 032004Google Scholar

    [26]

    Yu M, Liu F, Li J, Liu J, Zhang Y, Cheng F 2021 Adv. Energy Mater. 12 2100640Google Scholar

    [27]

    Yang X, Specht C G 2019 Front. Mol. Neurosci. 12 161Google Scholar

    [28]

    Lu L, Jia Y, Kirunda J B, Xu Y, Ge M, Pei Q, Yang L 2019 Nonlinear Dyn. 95 1673Google Scholar

    [29]

    Beckstead M J, Grandy D K, Wickman K, Williams J T 2004 Neuron 42 939Google Scholar

    [30]

    Shipman S L, Nicoll R A 2012 Proc. Natl. Acad. Sci. 109 19432Google Scholar

    [31]

    Hayashi A, Masuzawa N, Yubuchi S, Tsuji F, Hotehama C, Sakuda A, Tatsumisago M 2019 Nat. Commun. 10 1Google Scholar

    [32]

    Wei H, Yu H, Gong J, Zhang J, Han H, Ma M, Ni Y, Du Y, Zhang S, Liu L, Xu W 2019 ACS Appl. Electron. Mater. 2 316Google Scholar

    [33]

    Wen Y, Wang B, Zeng G, Nogita K, Ye D, Wang L 2015 Chem. Asian J. 10 661Google Scholar

    [34]

    Huang Q, Xu S, Xiao L, He P, Liu J, Yang Y, Wang P, Huang B, Wei W 2018 Inorg. Chem. 57 15584Google Scholar

    [35]

    Magee J C, Grienberger C 2020 Annu. Rev. Neurosci. 43 95Google Scholar

    [36]

    Li Y, Zhong Y, Zhang J, Xu L, Wang Q, Sun H, Tong H, Cheng X, Miao X 2014 Sci. Rep. 4 1Google Scholar

    [37]

    Van Rossum M C, Bi G Q, Turrigiano G G 2000 J. Neurosci. 20 8812Google Scholar

    [38]

    Fang L, Dai S, Zhao Y, Liu D, Huang J 2020 Adv. Electron. Mater. 6 1901217Google Scholar

    [39]

    Yang K, Yang L, Wang Z, Guo B, Song Z, Fu Y, Ji Y, Liu M, Zhao W, Liu X 2021 Adv. Energy Mater. 11 2100601Google Scholar

    [40]

    López J C 2001 Nat. Rev. Neurosci. 2 307Google Scholar

    [41]

    Gong J, Yu H, Zhou X, Wei H, Ma M, Han H, Zhang S, Ni Y, Li Y, Xu W 2020 Adv. Funct. Mater. 30 2005413Google Scholar

    [42]

    郭科鑫, 于海洋, 韩弘, 卫欢欢, 龚江东, 刘璐, 黄茜, 高清运, 徐文涛 2020 物理学报 69 238501Google Scholar

    Guo K X, Yu H Y, Han H, Wei H H, Gong J D, Liu L, Huang Q, Gao Q Y, Xu W T 2020 Acta Phys. Sin. 69 238501Google Scholar

    [43]

    Zhang S, Guo J, Liu L, Ruan H, Kong C, Yuan X, Zhang B, Gu G, Cui P, Cheng G 2022 Nano Energy 91 106660Google Scholar

    [44]

    Lee Y, Oh J Y, Xu W, Kim O, Kim T R, Kang J, Kim Y, Son D, Tok J B H, Park M J 2018 Sci. Adv. 4 eaat7387Google Scholar

    [45]

    Shim H, Jang S, Jang J G, Rao Z, Hong J I, Sim K, Yu C 2022 Nano Res. 15 758Google Scholar

    [46]

    Yang F, Sun L, Duan Q, Dong H, Jing Z, Yang Y, Li R, Zhang X, Hu W, Chua L 2021 Smart Mater. 2 99Google Scholar

  • [1] 李洋帆, 郭红霞, 张鸿, 白如雪, 张凤祁, 马武英, 钟向丽, 李济芳, 卢小杰. 双沟槽SiC 金属-氧化物-半导体型场效应管重离子单粒子效应. 物理学报, 2024, 73(2): 026103. doi: 10.7498/aps.73.20231440
    [2] 李瑞, 徐邦林, 周建芳, 姜恩华, 汪秉宏, 袁五届. 一种突触可塑性导致的觉醒-睡眠周期中突触强度变化和神经动力学转变. 物理学报, 2023, 72(24): 248706. doi: 10.7498/aps.72.20231037
    [3] 李岩, 陈鑫力, 王伟胜, 石智文, 竺立强. 蛋壳膜电解质栅控氧化物神经形态晶体管. 物理学报, 2023, 72(15): 157302. doi: 10.7498/aps.72.20230411
    [4] 鞠晓璐, 李可, 余福成, 许明伟, 邓彪, 李宾, 肖体乔. 电解池电化学反应过程的运动衬度X射线成像. 物理学报, 2022, 71(14): 144101. doi: 10.7498/aps.71.20220339
    [5] 华洪涛, 陆博, 古华光. 兴奋性自突触引起神经簇放电频率降低或增加的非线性机制. 物理学报, 2020, 69(9): 090502. doi: 10.7498/aps.69.20191709
    [6] 郭科鑫, 于海洋, 韩弘, 卫欢欢, 龚江东, 刘璐, 黄茜, 高清运, 徐文涛. 基于水热法制备三氧化钼纳米片的人工突触器件. 物理学报, 2020, 69(23): 238501. doi: 10.7498/aps.69.20200928
    [7] 陈义豪, 徐威, 王钰琪, 万相, 李岳峰, 梁定康, 陆立群, 刘鑫伟, 连晓娟, 胡二涛, 郭宇锋, 许剑光, 童祎, 肖建. 基于二维材料MXene的仿神经突触忆阻器的制备和长/短时程突触可塑性的实现. 物理学报, 2019, 68(9): 098501. doi: 10.7498/aps.68.20182306
    [8] 薛晓丹, 王美丽, 邵雨竹, 王俊松. 基于抑制性突触可塑性的神经元放电率自稳态机制. 物理学报, 2019, 68(7): 078701. doi: 10.7498/aps.68.20182234
    [9] 刘益春, 林亚, 王中强, 徐海阳. 氧化物基忆阻型神经突触器件. 物理学报, 2019, 68(16): 168504. doi: 10.7498/aps.68.20191262
    [10] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 物理学报, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [11] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟. 物理学报, 2017, 66(21): 217701. doi: 10.7498/aps.66.217701
    [12] 邵楠, 张盛兵, 邵舒渊. 具有突触特性忆阻模型的改进与模型经验学习特性机理. 物理学报, 2016, 65(12): 128503. doi: 10.7498/aps.65.128503
    [13] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏. 平面型钙钛矿太阳能电池温度相关的光伏性能时间响应特性. 物理学报, 2016, 65(18): 188801. doi: 10.7498/aps.65.188801
    [14] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析. 物理学报, 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [15] 任国栋, 武刚, 马军, 陈旸. 一类自突触作用下神经元电路的设计和模拟. 物理学报, 2015, 64(5): 058702. doi: 10.7498/aps.64.058702
    [16] 王美丽, 王俊松. 基于抑制性突触可塑性的反馈神经回路兴奋性与抑制性动态平衡. 物理学报, 2015, 64(10): 108701. doi: 10.7498/aps.64.108701
    [17] 夏小飞, 王俊松. 基于分岔理论的突触可塑性对神经群动力学特性调控规律研究. 物理学报, 2014, 63(14): 140503. doi: 10.7498/aps.63.140503
    [18] 陈军, 李春光. 具有自适应反馈突触的神经元模型中的混沌:电路设计. 物理学报, 2011, 60(5): 050503. doi: 10.7498/aps.60.050503
    [19] 肖定全, 韦力凡, 李子森, 朱建国, 钱正洪, 彭文斌. 金属氧化物薄膜的多离子束反应共溅射模型(Ⅱ)——数值计算与结果讨论. 物理学报, 1996, 45(2): 345-352. doi: 10.7498/aps.45.345
    [20] 肖定全, 韦力凡, 李子森, 朱建国, 钱正洪, 彭文斌. 金属氧化物薄膜的多离子束反应共溅射模型(Ⅰ)——模型建立. 物理学报, 1996, 45(2): 330-338. doi: 10.7498/aps.45.330
计量
  • 文章访问数:  5541
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-19
  • 修回日期:  2022-04-10
  • 上网日期:  2022-07-21
  • 刊出日期:  2022-07-20

/

返回文章
返回