搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空穴掺杂Sr2FeMoO6的晶体结构及磁性研究

胡艳春 王艳文 张克磊 王海英 马恒 路庆凤

引用本文:
Citation:

空穴掺杂Sr2FeMoO6的晶体结构及磁性研究

胡艳春, 王艳文, 张克磊, 王海英, 马恒, 路庆凤

Hole doping effects on structure and magnetic properties of Sr2FeMoO6

Hu Yan-Chun, Wang Yan-Wen, Zhang Ke-Lei, Wang Hai-Ying, Ma Heng, Lu Qing-Feng
PDF
导出引用
  • 采用传统高温固相反应法制备了空穴掺杂的系列样品Sr2-xKxFeMoO6 (0 x 0.04), 研究了其晶体结构和磁性质. X射线粉末衍射结果表明该系列样品均为单相, 四方晶系, 空间群为I4/m. 碱金属K的含量可以调控反位缺陷的浓度. 未掺杂样品Sr2FeMoO6在280 K时的原胞磁矩为1.12 B. 掺杂量为x=0.04样品的原胞磁矩为1.26 B. 阳离子有序、晶格畸变是影响Sr2-xKxFeMoO6磁性的重要因素.
    Samples of Sr2-xKxFeMoO6 (x=0, 0.01, 0.02, 0.03, 0.04) are prepared by standard solid-state reaction. The crystal structures and magnetic properties for the ordered double perovskite oxides Sr2-xKxFeMoO6 (0 x 0.04) are investigated. X-ray powder diffraction studies reveal that all the samples are of single phase and each of them has a I4/m symmetry. The anti-site defects in double perovskite oxides of Sr2FeMoO6 may be adjusted by alkali metal element of K doping. The unit cell magnetizations at 280 K are 1.12B for x=0.00 and 1.26B for x=0.04. The cation-ordering and the variation of structure parameters play improtant roles in determining the magnetism in the doping system.
    • 基金项目: 国家自然科学基金(批准号:11074066)、河南师范大学博士科研启动金 (批准号: 01026500109)和河南省科技厅科技攻关项目(批准号:102102210186)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11074066), the Henan Normal University Doctor Science Foundation (Grant No. 01026500109), and the Scientific and Technological Project of Henan Province (Grant No. 102102210186).
    [1]

    Long Y W, Hayashi N, Saito T, Azuma M, Muranaka S, Shimakawa Y 2009 Nature 458 60

    [2]

    Chakraverty S, Yoshimatsu K, Kozuka Y, Kumigashira H, Oshima M, Makino T, Ohtomo A, Kawasaki M 2011 Phys. Rev. B 84 132411

    [3]

    Prodi A, Gilioli E, Gauzzi A, Licci F, Marezio M, Bolzoni F, Huang Q, Santoro A, Lynn J W 2004 Nature Materials 3 48

    [4]

    Yonatan Dubi, Yigal Meir Yshai Avishai 2007 Nature 449 876

    [5]

    Yanez-Vilar S, Mun E D, Zapf V S, Ueland B G, Gardner J S, Thompson J D, Singleton J, Sanchez-Andujar M, Mira J, Biskup N, Senaris-Rodriguez M A, Batista C D 2011 Phys. Rev. B 84 134427

    [6]

    Kobayashi K I, Kimura T, Sawada H, Terakura K, Tokura Y 1998 Nature 395 677

    [7]

    Patterson F K, Moeller C W, Ward R 1963 Inorg. Chem. 2 196

    [8]

    Galasso F S, Douglas F C, Kasper R J 1966 J. Chem. Phys. 44 1672

    [9]

    Shannon R D 1976 Acta Cryst. 32 751

    [10]

    Anderson Mark T, Greenwood Kevin B, Taylor Gregg A, Poeppelmeier Kenneth R 1993 Prog. Solid State Chem. 22 197

    [11]

    Hauser Adam J, Williams Robert E A, Ricciardo Rebecca A, Arda Genc, Manisha Dixit, Lucy Jeremy M, Woodward Patrick M, Fraser Hamish L, Yang F Y 2011 Phys. Rev. B 83 014407

    [12]

    Panguluri Raghava P, Sheng Xu, Yutaka Moritomo, Solovyev I V, Nadgorny B 2009 Appl. Phys. Lett. 94 012501

    [13]

    Park B G, Jeong Y H, Park J H 2009 Phys. Rev. B 79 035105

    [14]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [15]

    Goto T, Luthi B 2003 Adv. Phys. 52 67

    [16]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17

    [17]

    Salamon M B, Jaime M 2001 Rev. Mod. Phys. 73 583

    [18]

    Navarro J, Fontcuberta J, Izquierdo M, Avila J, Asensio M C 2004 Phys. Rev. B 69 115101

    [19]

    Hu Y C, Ge J J, Ji Q, Jiang Z S, Wu X S, Cheng G F 2010 Mater. Chem. Phys. 124 274

    [20]

    Lu M F, Wang J P, Liu J F, Hao X F, Zhou D F, Wu Z J, Meng J 2006 Appl. Phys. Lett. 89 092505

    [21]

    Kim G, Lee S S, Wi S C, Kang J S, Han S W, Kim J Y, Lee B W, Kim J Y, Shin H J, Parr B G, Park J H, Min B I 2006 Journal of Applied Physics 99 08Q309

    [22]

    Zhang Q, Rao G H, Xiao Y G, Liu G Y, Zhang Y, Liang J K 2006 Appl. Phys. A 84 459

    [23]

    Hu Y C, Ji Q, Ge J J, Xie R B, Jiang Z S, Wu X S, Cheng G F, Liu H R, Lu Q F 2010 J. Alloy. Compd. 492 496

    [24]

    Toby B H 2001 J. Appl. Cryst. 34 210

    [25]

    Wu X S, Chen W M, Jin X, Jiang S S 1996 Physica C 273 99

    [26]

    Wu X S, Jiang S S, Xu N, Pan F M, Huang X R, Ji W, Mao Z Q, Xu G J, Zhang Y H 1996 Physica C 266 296

    [27]

    LÜ M F, Wang J P, Liu J F, Song W, Hao X F, Zhou D F, Liu X J, Wu Z J, Meng J 2007 J. Alloy. Compd. 428 214

    [28]

    Shannon R D 1976 Acta Cryst. 32 751

    [29]

    Teresa J M De, Serrate D, Blasco J, Ibarra M R, Morellon L 2004 Physical Review B 69 144401

    [30]

    Linden J, Yamamoto T, Karppinen M, Yamauchi H, Pietari T 2000 Appl. Phys. Lett. 76 2925

    [31]

    Muñoz-Garcia A B, Michele Pavone, Carter Emily A 2011 Chem. Mater. 23 4525

  • [1]

    Long Y W, Hayashi N, Saito T, Azuma M, Muranaka S, Shimakawa Y 2009 Nature 458 60

    [2]

    Chakraverty S, Yoshimatsu K, Kozuka Y, Kumigashira H, Oshima M, Makino T, Ohtomo A, Kawasaki M 2011 Phys. Rev. B 84 132411

    [3]

    Prodi A, Gilioli E, Gauzzi A, Licci F, Marezio M, Bolzoni F, Huang Q, Santoro A, Lynn J W 2004 Nature Materials 3 48

    [4]

    Yonatan Dubi, Yigal Meir Yshai Avishai 2007 Nature 449 876

    [5]

    Yanez-Vilar S, Mun E D, Zapf V S, Ueland B G, Gardner J S, Thompson J D, Singleton J, Sanchez-Andujar M, Mira J, Biskup N, Senaris-Rodriguez M A, Batista C D 2011 Phys. Rev. B 84 134427

    [6]

    Kobayashi K I, Kimura T, Sawada H, Terakura K, Tokura Y 1998 Nature 395 677

    [7]

    Patterson F K, Moeller C W, Ward R 1963 Inorg. Chem. 2 196

    [8]

    Galasso F S, Douglas F C, Kasper R J 1966 J. Chem. Phys. 44 1672

    [9]

    Shannon R D 1976 Acta Cryst. 32 751

    [10]

    Anderson Mark T, Greenwood Kevin B, Taylor Gregg A, Poeppelmeier Kenneth R 1993 Prog. Solid State Chem. 22 197

    [11]

    Hauser Adam J, Williams Robert E A, Ricciardo Rebecca A, Arda Genc, Manisha Dixit, Lucy Jeremy M, Woodward Patrick M, Fraser Hamish L, Yang F Y 2011 Phys. Rev. B 83 014407

    [12]

    Panguluri Raghava P, Sheng Xu, Yutaka Moritomo, Solovyev I V, Nadgorny B 2009 Appl. Phys. Lett. 94 012501

    [13]

    Park B G, Jeong Y H, Park J H 2009 Phys. Rev. B 79 035105

    [14]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [15]

    Goto T, Luthi B 2003 Adv. Phys. 52 67

    [16]

    Lee P A, Nagaosa N, Wen X G 2006 Rev. Mod. Phys. 78 17

    [17]

    Salamon M B, Jaime M 2001 Rev. Mod. Phys. 73 583

    [18]

    Navarro J, Fontcuberta J, Izquierdo M, Avila J, Asensio M C 2004 Phys. Rev. B 69 115101

    [19]

    Hu Y C, Ge J J, Ji Q, Jiang Z S, Wu X S, Cheng G F 2010 Mater. Chem. Phys. 124 274

    [20]

    Lu M F, Wang J P, Liu J F, Hao X F, Zhou D F, Wu Z J, Meng J 2006 Appl. Phys. Lett. 89 092505

    [21]

    Kim G, Lee S S, Wi S C, Kang J S, Han S W, Kim J Y, Lee B W, Kim J Y, Shin H J, Parr B G, Park J H, Min B I 2006 Journal of Applied Physics 99 08Q309

    [22]

    Zhang Q, Rao G H, Xiao Y G, Liu G Y, Zhang Y, Liang J K 2006 Appl. Phys. A 84 459

    [23]

    Hu Y C, Ji Q, Ge J J, Xie R B, Jiang Z S, Wu X S, Cheng G F, Liu H R, Lu Q F 2010 J. Alloy. Compd. 492 496

    [24]

    Toby B H 2001 J. Appl. Cryst. 34 210

    [25]

    Wu X S, Chen W M, Jin X, Jiang S S 1996 Physica C 273 99

    [26]

    Wu X S, Jiang S S, Xu N, Pan F M, Huang X R, Ji W, Mao Z Q, Xu G J, Zhang Y H 1996 Physica C 266 296

    [27]

    LÜ M F, Wang J P, Liu J F, Song W, Hao X F, Zhou D F, Liu X J, Wu Z J, Meng J 2007 J. Alloy. Compd. 428 214

    [28]

    Shannon R D 1976 Acta Cryst. 32 751

    [29]

    Teresa J M De, Serrate D, Blasco J, Ibarra M R, Morellon L 2004 Physical Review B 69 144401

    [30]

    Linden J, Yamamoto T, Karppinen M, Yamauchi H, Pietari T 2000 Appl. Phys. Lett. 76 2925

    [31]

    Muñoz-Garcia A B, Michele Pavone, Carter Emily A 2011 Chem. Mater. 23 4525

  • [1] 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能. 物理学报, 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [2] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [3] 宋庆功, 赵俊普, 顾威风, 甄丹丹, 郭艳蕊, 李泽朋. 基于密度泛函理论的La掺杂-TiAl体系结构延性与电子性质. 物理学报, 2017, 66(6): 066103. doi: 10.7498/aps.66.066103
    [4] 陈敏, 万婷, 王征, 罗朝明, 刘靖. 宽绝对禁带的一维磁性光子晶体结构. 物理学报, 2017, 66(1): 014204. doi: 10.7498/aps.66.014204
    [5] 王步升, 刘永. MnTe电子结构和磁性的第一性原理研究. 物理学报, 2016, 65(6): 066101. doi: 10.7498/aps.65.066101
    [6] 宋庆功, 秦国顺, 杨宝宝, 蒋清杰, 胡雪兰. 杂质浓度对Zr替位掺杂-TiAl合金的结构延性和电子性质的影响. 物理学报, 2016, 65(4): 046102. doi: 10.7498/aps.65.046102
    [7] 彭方, 张庆礼, 王小飞, 张会丽, 丁守军, 刘文鹏, 罗建乔, 孙敦陆, 孙贵花. Nd3+:SrY2O4粉体的制备、结构与光谱性能研究. 物理学报, 2016, 65(1): 014211. doi: 10.7498/aps.65.014211
    [8] 张新伟, 华正和, 蒋毓文, 杨绍光. 溶胶凝胶自燃烧法合成金属与合金材料研究进展. 物理学报, 2015, 64(9): 098101. doi: 10.7498/aps.64.098101
    [9] 周卓辉, 刘晓来, 黄大庆, 康飞宇. 一种基于十字镂空结构的低频超材料吸波体的设计与制备. 物理学报, 2014, 63(18): 184101. doi: 10.7498/aps.63.184101
    [10] 刘明, 曹世勋, 袁淑娟, 康保娟, 鲁波, 张金仓. Pr掺杂DyFeO3体系的自旋重取向相变、晶格畸变与Raman光谱研究 . 物理学报, 2013, 62(14): 147601. doi: 10.7498/aps.62.147601
    [11] 潘敏, 黄整, 赵勇. 强关联效应下非磁性元素Ir掺杂的SmFeAsO电子结构理论研究. 物理学报, 2013, 62(21): 217401. doi: 10.7498/aps.62.217401
    [12] 杨天勇, 孔春阳, 阮海波, 秦国平, 李万俊, 梁薇薇, 孟祥丹, 赵永红, 方亮, 崔玉亭. 退火温度对N+注入ZnO:Mn薄膜结构及室温铁磁性的影响. 物理学报, 2012, 61(16): 168101. doi: 10.7498/aps.61.168101
    [13] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能. 物理学报, 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [14] 丁万昱, 王华林, 巨东英, 柴卫平. O2流量对磁控溅射N掺杂TiO2薄膜成分及晶体结构的影响. 物理学报, 2011, 60(2): 028105. doi: 10.7498/aps.60.028105
    [15] 胡 妮, 谢 卉, 汪丽莉, 林 颖, 熊 锐, 余祖兴, 汤五丰, 石 兢. Fe掺杂对自旋梯状化合物Sr14(Cu1-yFey)24O41的结构和电输运性质的影响. 物理学报, 2006, 55(7): 3480-3487. doi: 10.7498/aps.55.3480
    [16] 张礼杰, 雷 鸣, 王宇明, 李建立, 孙 彧, 刘景和. Yb3+掺杂KY(WO4)2激光晶体生长、结构与光谱分析. 物理学报, 2006, 55(6): 3141-3146. doi: 10.7498/aps.55.3141
    [17] 伏广才, 李明星, 董 成, 郭 娟, 杨立红. KxCoO2·yH2O(x<0.2,y≤0.8)的晶体结构、输运及磁学性质. 物理学报, 2005, 54(12): 5713-5716. doi: 10.7498/aps.54.5713
    [18] 徐 敏, 沈 雯, 高 瞻, 赵良磊, 姜 蓓, 杨 磊, 张澜庭. La0.4FeCo3Sb12晶体结构的x射线和电子衍射表征. 物理学报, 2005, 54(7): 3302-3306. doi: 10.7498/aps.54.3302
    [19] 罗鸿志, 贾 琳, 李养贤, 孟凡斌, 申 江, 陈难先, 吴光恒, 杨伏明. (Nd1-xErx)3Fe25Cr4.0(0≤x≤1.0) 化合物的结构与磁性. 物理学报, 2005, 54(5): 2176-2182. doi: 10.7498/aps.54.2176
    [20] 谢红兰, 高鸿奕, 陈建文, 王寯越, 朱佩平, 熊诗圣, 洗鼎昌, 徐至展. 具有原子分辨率的x射线荧光全息术的数值模拟研究. 物理学报, 2003, 52(9): 2223-2228. doi: 10.7498/aps.52.2223
计量
  • 文章访问数:  4432
  • PDF下载量:  450
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-01-18
  • 修回日期:  2012-06-04
  • 刊出日期:  2012-11-05

空穴掺杂Sr2FeMoO6的晶体结构及磁性研究

  • 1. 河南师范大学物理与信息工程学院, 新乡 453007;
  • 2. 河南省光伏材料重点实验室, 新乡 453007;
  • 3. 新乡医学院生命科学技术系, 新乡 453003
    基金项目: 国家自然科学基金(批准号:11074066)、河南师范大学博士科研启动金 (批准号: 01026500109)和河南省科技厅科技攻关项目(批准号:102102210186)资助的课题.

摘要: 采用传统高温固相反应法制备了空穴掺杂的系列样品Sr2-xKxFeMoO6 (0 x 0.04), 研究了其晶体结构和磁性质. X射线粉末衍射结果表明该系列样品均为单相, 四方晶系, 空间群为I4/m. 碱金属K的含量可以调控反位缺陷的浓度. 未掺杂样品Sr2FeMoO6在280 K时的原胞磁矩为1.12 B. 掺杂量为x=0.04样品的原胞磁矩为1.26 B. 阳离子有序、晶格畸变是影响Sr2-xKxFeMoO6磁性的重要因素.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回