搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二元凝聚体中亮-亮孤子的振荡-局域转变行为

何章明 王登龙 丁建文 颜晓红

引用本文:
Citation:

二元凝聚体中亮-亮孤子的振荡-局域转变行为

何章明, 王登龙, 丁建文, 颜晓红

Oscillation-localization transition behavior of bright-bright solitons in two species Bose-Einstein condensates

He Zhang-Ming, Wang Deng-Long, Ding Jian-Wen, Yan Xiao-Hong
PDF
导出引用
  • 考虑时间相关的种间相互吸引作用,研究了局限于谐振外部势阱中的二元玻色-爱因斯坦凝聚体中亮-亮孤子的传播特性.结果表明,当种内和种间相互吸引作用都不变时,亮-亮孤子呈现出周期性的振荡; 如果种内相互吸引作用仍保持不变,而种间相互吸引作用随时间指数增加时, 发现凝聚体中产生振荡-局域转变行为,且这种振荡-局域的转变行为可通过调节谐振势阱的横向囚禁频率来控制.此外,还设计了实验方案来观察孤子的这种振荡-局域转变行为.
    Considering the time-dependent interspecies interactions, we study the dynamic behaviors of bright-bright solitons in two species Bose-Einstein condensates in the harmonic external potentials. In the presence of unchanged attractive interspecies and intraspecies interactions, bright-bright solitons exhibit periodic oscillations. When the attractive intraspecies interactions are fixed but the attractive interspecies interactions are increased exponentially, interestingly, a transition behavior from oscillation to localization is observed. Meanwhile, this transition behavior can be controlled by tuning the transverse trapping frequency of harmonic potential. Furthermore, an experimental protocol is designed to observe the transition behavior in the current experimental conditions.
    • 基金项目: 国家自然科学基金(批准号: 51032002, 11074212)和国家高技术研究发展计划(批准号: 2011AA050526)资助的课题.
    • Funds: Project supported by National Natural Science Foundation of China (Grant Nos. 51032002, 11074212), and the National High Technology Research and Development Program of China (Grant No. 2011AA050526).
    [1]

    Becker C, Stellmer S, Soltan-Panahi P, Dörscher S, Baumert M, Richter E M, Kronjäger J, Bongs K, Sengstock K 2008 Nat. Phys. 4 496

    [2]

    Hamner C, Chang J J, Engels P, Hoefer M A 2011 Phys. Rev. Lett. 106 065302

    [3]

    Hoefer M A, Chang J J, Hamner C, Engels P 2011 Phys. Rev. A 84 041605

    [4]

    Papp S B, Pino J M, Wieman C E 2008 Phys. Rev. Lett. 101 040402

    [5]

    Sabbatini J, Zurek W H, Davis M J 2011 Phys. Rev. Lett. 107 230402

    [6]

    Pu H, Bigelow N P 1998 Phys. Rev. Lett. 80 1130

    [7]

    Pu H, Bigelow N P 1998 Phys. Rev. Lett. 80 1134

    [8]

    Lee C H 2009 Phys. Rev. Lett. 102 070401

    [9]

    Csire G, Schumayer D, Apagyi B 2010 Phys. Rev. A 82 063608

    [10]

    Novoa D, Malomed B A, Michinel H, Pérez-García V M 2008 Phys. Rev. Lett. 101 144101

    [11]

    Zhang X F, Hu X H, Liu X X, Liu W M 2009 Phys. Rev. A 79 033630

    [12]

    Liu X X, Pu H, Xiong B, Liu W M, Gong J B 2009 Phys. Rev. A 79 013423

    [13]

    Law K J H, Kevrekidis P G, Tuckerman L S 2010 Phys. Rev. Lett. 105 160405

    [14]

    Wang D S, Hu X H, Liu W M 2010 Phys. Rev. A 82 023612

    [15]

    Yu H Y, Pan L X, Yan J R, Tang J Q 2009 J. Phys. B: At. Mol. Opt. Phys. 42 025301

    [16]

    Li L, Malomed B A, Mihalache D, Liu W M 2006 Phys. Rev. E 73 066610

    [17]

    Li L, Li Z D, Malomed B A, Mihalache D, Liu W M 2005 Phys. Rev. A 72 033611

    [18]

    Zhao L C, He S L 2011 Phys. Lett. A 375 3017

    [19]

    Wen L, Liu W M, Cai Y, Zhang J M, Hu J 2012 Phys. Rev. A 85 043602

    [20]

    He Z M, Wang D L, Ding J W, Yan X H 2012 Eur. Phys. J. D 66 139

    [21]

    Luo X Q, Wang D L, Zhang Z Q, Ding J W, Liu W M 2011 Phys. Rev. A 84 033803

    [22]

    Chen Z, Wu B 2010 Phys. Rev. A 81 043611

    [23]

    Wu L, Li L, Zhang J F 2009 Phys. Rev. A 80 013617

    [24]

    Xue J K, Peng P 2006 Chin. Phys. 15 1149

    [25]

    Zhang C W, Liu J, Raizen M G, Niu Q 2004 Phys. Rev. Lett. 92 054101

    [26]

    Huang G X, Velarde M G, Makarov V A 2001 Phys. Rev. A 64 013617

    [27]

    Huang G X 2004 Chin. Phys. 13 1866

    [28]

    Wang S J, Jia C L, Zhao D, Luo H G, An J H 2003 Phys. Rev. A 68 015601

    [29]

    Zhang X F, Yang Q, Zhang J F, Chen X Z, Liu W M 2008 Phys. Rev. A 77 023613

    [30]

    Wu B, Liu J, Niu Q 2002 Phys. Rev. Lett. 88 034101

    [31]

    Li Z D, Li Q Y, Li L, Liu W M 2007 Phys. Rev. E 76 026605

    [32]

    Li Z D, Li Q Y, He P B, Bai Z G, Sun Y B 2007 Ann. Phys. 322 2945

    [33]

    Ma Y, Fu L B, Yang Z A, Liu J 2006 Acta Phys. Sin. 55 5623 (in Chinese) [马云, 傅立斌, 杨志安, 刘杰 2006 物理学报 55 5623]

    [34]

    Wang G F, Fu L B, Zhao H, Liu J 2005 Acta Phys. Sin. 54 5003 (in Chinese) [王冠芳, 傅立斌, 赵鸿, 刘杰 2006 物理学报 54 5003]

    [35]

    Wang D L, Yan X H, Liu W M 2008 Phys. Rev. E 78 026606

    [36]

    Burger S, Bongs K, Dettmer S, Ertmer W, Lewenstein K 1999 Phys. Rev. Lett. 83 5198

    [37]

    Pérez-García V M, Beitia J B 2005 Phys. Rev. A 72 033620

    [38]

    Thalhammer G, Barontini G, Sarlo L D, Catani J, Minardi F, Inguscio M 2008 Phys. Rev. Lett. 100 210402

    [39]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225

    [40]

    Simoni A, Zaccanti M, D'Errico C, Fattori M, Roati G, Inguscio M, Modugno G 2008 Phys. Rev. A 77 052705

  • [1]

    Becker C, Stellmer S, Soltan-Panahi P, Dörscher S, Baumert M, Richter E M, Kronjäger J, Bongs K, Sengstock K 2008 Nat. Phys. 4 496

    [2]

    Hamner C, Chang J J, Engels P, Hoefer M A 2011 Phys. Rev. Lett. 106 065302

    [3]

    Hoefer M A, Chang J J, Hamner C, Engels P 2011 Phys. Rev. A 84 041605

    [4]

    Papp S B, Pino J M, Wieman C E 2008 Phys. Rev. Lett. 101 040402

    [5]

    Sabbatini J, Zurek W H, Davis M J 2011 Phys. Rev. Lett. 107 230402

    [6]

    Pu H, Bigelow N P 1998 Phys. Rev. Lett. 80 1130

    [7]

    Pu H, Bigelow N P 1998 Phys. Rev. Lett. 80 1134

    [8]

    Lee C H 2009 Phys. Rev. Lett. 102 070401

    [9]

    Csire G, Schumayer D, Apagyi B 2010 Phys. Rev. A 82 063608

    [10]

    Novoa D, Malomed B A, Michinel H, Pérez-García V M 2008 Phys. Rev. Lett. 101 144101

    [11]

    Zhang X F, Hu X H, Liu X X, Liu W M 2009 Phys. Rev. A 79 033630

    [12]

    Liu X X, Pu H, Xiong B, Liu W M, Gong J B 2009 Phys. Rev. A 79 013423

    [13]

    Law K J H, Kevrekidis P G, Tuckerman L S 2010 Phys. Rev. Lett. 105 160405

    [14]

    Wang D S, Hu X H, Liu W M 2010 Phys. Rev. A 82 023612

    [15]

    Yu H Y, Pan L X, Yan J R, Tang J Q 2009 J. Phys. B: At. Mol. Opt. Phys. 42 025301

    [16]

    Li L, Malomed B A, Mihalache D, Liu W M 2006 Phys. Rev. E 73 066610

    [17]

    Li L, Li Z D, Malomed B A, Mihalache D, Liu W M 2005 Phys. Rev. A 72 033611

    [18]

    Zhao L C, He S L 2011 Phys. Lett. A 375 3017

    [19]

    Wen L, Liu W M, Cai Y, Zhang J M, Hu J 2012 Phys. Rev. A 85 043602

    [20]

    He Z M, Wang D L, Ding J W, Yan X H 2012 Eur. Phys. J. D 66 139

    [21]

    Luo X Q, Wang D L, Zhang Z Q, Ding J W, Liu W M 2011 Phys. Rev. A 84 033803

    [22]

    Chen Z, Wu B 2010 Phys. Rev. A 81 043611

    [23]

    Wu L, Li L, Zhang J F 2009 Phys. Rev. A 80 013617

    [24]

    Xue J K, Peng P 2006 Chin. Phys. 15 1149

    [25]

    Zhang C W, Liu J, Raizen M G, Niu Q 2004 Phys. Rev. Lett. 92 054101

    [26]

    Huang G X, Velarde M G, Makarov V A 2001 Phys. Rev. A 64 013617

    [27]

    Huang G X 2004 Chin. Phys. 13 1866

    [28]

    Wang S J, Jia C L, Zhao D, Luo H G, An J H 2003 Phys. Rev. A 68 015601

    [29]

    Zhang X F, Yang Q, Zhang J F, Chen X Z, Liu W M 2008 Phys. Rev. A 77 023613

    [30]

    Wu B, Liu J, Niu Q 2002 Phys. Rev. Lett. 88 034101

    [31]

    Li Z D, Li Q Y, Li L, Liu W M 2007 Phys. Rev. E 76 026605

    [32]

    Li Z D, Li Q Y, He P B, Bai Z G, Sun Y B 2007 Ann. Phys. 322 2945

    [33]

    Ma Y, Fu L B, Yang Z A, Liu J 2006 Acta Phys. Sin. 55 5623 (in Chinese) [马云, 傅立斌, 杨志安, 刘杰 2006 物理学报 55 5623]

    [34]

    Wang G F, Fu L B, Zhao H, Liu J 2005 Acta Phys. Sin. 54 5003 (in Chinese) [王冠芳, 傅立斌, 赵鸿, 刘杰 2006 物理学报 54 5003]

    [35]

    Wang D L, Yan X H, Liu W M 2008 Phys. Rev. E 78 026606

    [36]

    Burger S, Bongs K, Dettmer S, Ertmer W, Lewenstein K 1999 Phys. Rev. Lett. 83 5198

    [37]

    Pérez-García V M, Beitia J B 2005 Phys. Rev. A 72 033620

    [38]

    Thalhammer G, Barontini G, Sarlo L D, Catani J, Minardi F, Inguscio M 2008 Phys. Rev. Lett. 100 210402

    [39]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225

    [40]

    Simoni A, Zaccanti M, D'Errico C, Fattori M, Roati G, Inguscio M, Modugno G 2008 Phys. Rev. A 77 052705

  • [1] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波. 物理学报, 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [2] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [3] 唐娜, 杨雪滢, 宋琳, 张娟, 李晓霖, 周志坤, 石玉仁. 三体相互作用下准一维玻色-爱因斯坦凝聚体中的带隙孤子及其稳定性. 物理学报, 2020, 69(1): 010301. doi: 10.7498/aps.69.20191278
    [4] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响. 物理学报, 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [5] 何章明, 张志强. 玻色-爱因斯坦凝聚体中的双孤子相互作用操控. 物理学报, 2016, 65(11): 110502. doi: 10.7498/aps.65.110502
    [6] 李明, 陈翠玲. 二能级原子玻色-爱因斯坦凝聚体与双模光场相互作用系统中原子激光的压缩性质. 物理学报, 2014, 63(4): 043201. doi: 10.7498/aps.63.043201
    [7] 张蔚曦, 张志强, 冉茂武, 欧永康, 何章明. 二元玻色-爱因斯坦凝聚体中矢量孤子的转化行为. 物理学报, 2014, 63(20): 200507. doi: 10.7498/aps.63.200507
    [8] 何章明, 张志强, 朱善华, 柳闻鹃. 光晶格势阱中二元凝聚体的矢量孤子的振荡和分裂. 物理学报, 2014, 63(19): 190502. doi: 10.7498/aps.63.190502
    [9] 谢元栋. 光格中旋量玻色-爱因斯坦凝聚的高阶非线性孤子激发. 物理学报, 2012, 61(21): 210305. doi: 10.7498/aps.61.210305
    [10] 赵文垒, 豆福全, 王建忠. 玻色-爱因斯坦凝聚体中非线性相互作用对量子共振棘流的影响 . 物理学报, 2012, 61(22): 220503. doi: 10.7498/aps.61.220503
    [11] 赵建刚, 孙长勇, 梁宝龙, 苏杰. 虚光场对玻色-爱因斯坦凝聚体与二项式光场相互作用系统中光场压缩性质的影响. 物理学报, 2009, 58(7): 4635-4640. doi: 10.7498/aps.58.4635
    [12] 宗丰德, 杨阳, 张解放. 外势场作用下的玻色-爱因斯坦凝聚啁啾孤子的演化与操控. 物理学报, 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670
    [13] 刘 红, 魏佳羽, 楼森岳, 贺贤土. 一维Tonks-Girardeau原子气区域中的亮孤子解. 物理学报, 2008, 57(3): 1343-1346. doi: 10.7498/aps.57.1343
    [14] 宗丰德, 张解放. 装载于外势场中的玻色-爱因斯坦凝聚N-孤子间的相互作用. 物理学报, 2008, 57(5): 2658-2668. doi: 10.7498/aps.57.2658
    [15] 何章明, 王登龙. 凝聚体中亮孤子和暗孤子的交替演化. 物理学报, 2007, 56(6): 3088-3091. doi: 10.7498/aps.56.3088
    [16] 江德生, 佘卫龙. 多个光伏空间亮孤子相互作用研究. 物理学报, 2005, 54(5): 2090-2095. doi: 10.7498/aps.54.2090
    [17] 江德生, 欧阳世根, 佘卫龙. 暗-暗与亮-暗光伏孤子相互作用. 物理学报, 2004, 53(11): 3777-3785. doi: 10.7498/aps.53.3777
    [18] 周 明, 方家元, 黄春佳. 相互作用原子玻色-爱因斯坦凝聚体诱导的光场压缩效应. 物理学报, 2003, 52(8): 1916-1919. doi: 10.7498/aps.52.1916
    [19] 周明, 黄春佳. V型三能级原子玻色-爱因斯坦凝聚体与双模压缩光场相互作用系统中光场的压缩特性. 物理学报, 2002, 51(11): 2514-2516. doi: 10.7498/aps.51.2514
    [20] 闫珂柱, 谭维翰. 简谐势阱中具有吸引相互作用原子体系的玻色-爱因斯坦凝聚. 物理学报, 2000, 49(10): 1909-1911. doi: 10.7498/aps.49.1909
计量
  • 文章访问数:  4634
  • PDF下载量:  436
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-04
  • 修回日期:  2012-06-21
  • 刊出日期:  2012-12-05

二元凝聚体中亮-亮孤子的振荡-局域转变行为

  • 1. 湘潭大学物理系, 湘潭 411105;
  • 2. 南京邮电大学电子科学与工程学院, 南京 211106
    基金项目: 国家自然科学基金(批准号: 51032002, 11074212)和国家高技术研究发展计划(批准号: 2011AA050526)资助的课题.

摘要: 考虑时间相关的种间相互吸引作用,研究了局限于谐振外部势阱中的二元玻色-爱因斯坦凝聚体中亮-亮孤子的传播特性.结果表明,当种内和种间相互吸引作用都不变时,亮-亮孤子呈现出周期性的振荡; 如果种内相互吸引作用仍保持不变,而种间相互吸引作用随时间指数增加时, 发现凝聚体中产生振荡-局域转变行为,且这种振荡-局域的转变行为可通过调节谐振势阱的横向囚禁频率来控制.此外,还设计了实验方案来观察孤子的这种振荡-局域转变行为.

English Abstract

参考文献 (40)

目录

    /

    返回文章
    返回