搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

532nm长脉冲激光致GaAs热分解损伤的半解析法分析

毕娟 金光勇 倪晓武 张喜和 姚志健

引用本文:
Citation:

532nm长脉冲激光致GaAs热分解损伤的半解析法分析

毕娟, 金光勇, 倪晓武, 张喜和, 姚志健

Analysis of 532nm long pulse laser-induced thermal decomposition damage to GaAs by semi-analytical method

Bi Juan, Jin Guang-Yong, Ni Xiao-Wu, Zhang Xi-He, Yao Zhi-Jian
PDF
导出引用
  • 考虑到GaAs具有受热分解的特性, 采用热传导理论和半解析法研究了波长532 nm的毫秒量级长脉冲激光致GaAs 的表面热分解损伤. 首先, 建立了激光辐照GaAs的二维轴对称瞬态温度场及表面热分解损伤阈值的计算模型, 模拟了吸收率不同时, GaAs的瞬态温度场分布及热分解损伤阈值. 计算结果表明: 较高的吸收率引起GaAs表面的温升较高, 但所需的热分解损伤阈值较低; 增加作用激光能量密度, GaAs表面发生热分解损伤随之提前. 本文研究结果对激光与GaAs相互作用及其损伤机理的研究具有指导意义和实用价值.
    Considering the fact that the GaAs has the characteristics of thermal decomposition, the thermal decomposition damage to GaAs surface, induced by a 532 nm wavelength long pulse laser with a millisecond pulse width is studied by the heat conduction theoretical and semi-analytical method. First, the calculation models of two-dimensional axisymmetric transient temperature field and the surface thermal decomposition damage threshold for long pulse laser irradiation of GaAs are established, and the transient temperature fields and the thermal decomposition damage thresholds in GaAs with different absorption rates are simulated. The results show that the higher absorption rate causes the higher temperature rise on the surface of material, but the required decomposition damage energy density is lower. With the increase of laser energy density, the decomposition damage occurs more early. This paper has guiding significance and practical value for investigating the interaction between long pulse laser and GaAs and its damage mechanism.
    • 基金项目: 吉林省科技支撑重点项目(批准号: 2010PT)资助的课题.
    • Funds: Project supported by the Key Program of Science Technology of Jilin Province (Grant No. 2010PT).
    [1]

    Qi H F, Wang Q P, Li Y F, Zhang X Y, Liu Z J, Wang Y R, Zhang S S, Xia W, Jin G F 2007 Appl. Sur. Sci. 254 1373

    [2]

    Qi H F, Wang Q P , Zhang X Y, Liu Z J, Liu Z J, Chang J, Xia W, Jin G F 2008 J. Appl. Phys. 103 033106

    [3]

    Garg A, Kapoor A, Tripathi K N 2003 Optics & Laser Technology 35 21

    [4]

    Kuanr A V, Bansal S K, Srivastava G P 1996 Optics & Laser Technology 28 25

    [5]

    Lv G H, Man B Y, Zhang Y H, Liu A H, Zhang Q G 2004 OPTIK 115 347

    [6]

    Trelenberg T W, Dinh L N, Saw C K, Stuart B C, Balooch M 2004 Applied Surface Science 221 364

    [7]

    Srivastava P K, Singh A P, Kapoor A 2006 Optics & Laser Technology 38 649

    [8]

    Bi J, Zhang X H, Ni X W 2007 Proceedings of SPIE 6839 683926

    [9]

    Qin Y, Chen Y B, Ni X W, Shen Z H, Bi J, Zhang X H 2010 Optics and Lasers in Engineering 48 361

    [10]

    Wang B, Qin Y, Ni X W, Shen Z H, Lu J 2010 Applied Optics 49 5537

    [11]

    Liu J, Lu J, Ni X W, Dai G, Chen Y B 2010 Chinese Journal of lasers 37 1398 (in Chinese) [刘剑, 陆建, 倪晓武, 戴罡, 陈彦北 2010 中国激光 37 1398]

    [12]

    Bi J, Zhang X H, Ni X W 2011 Acta Phys. Sin. 60 114210 (in Chinese) [毕娟, 张喜和, 倪晓武 2011 物理学报 60 114210]

    [13]

    Bi J, Zhang X H, Ni X W, Jin G Y, Li C L, Xu L J, Chen Y B 2012 Lasers in Engineering 22 37

    [14]

    Ozisik M N (Translated by Yu C M) 1983 Heat conduction (Beijing: Higher Education Press) pp7-8 (in Chinese) [奥奇西克 M N著, 俞昌铭译 1983 热传导 (北京: 高等教育出版社) 第7—8页]

    [15]

    Gospavic R, Sreckovic M, Popov V 2004 Mathematics and Computers in Simulation 65 211

    [16]

    Press W H, Flannery B P, Teukolsky S A, Vetterling W T 1992 Numerical Recipes in FORTRAN 77 (Cambridge University Press)

    [17]

    Meyer J R, Kruer M R, Bartoli F J 1980 J. Appl. Phys. 51 5513

  • [1]

    Qi H F, Wang Q P, Li Y F, Zhang X Y, Liu Z J, Wang Y R, Zhang S S, Xia W, Jin G F 2007 Appl. Sur. Sci. 254 1373

    [2]

    Qi H F, Wang Q P , Zhang X Y, Liu Z J, Liu Z J, Chang J, Xia W, Jin G F 2008 J. Appl. Phys. 103 033106

    [3]

    Garg A, Kapoor A, Tripathi K N 2003 Optics & Laser Technology 35 21

    [4]

    Kuanr A V, Bansal S K, Srivastava G P 1996 Optics & Laser Technology 28 25

    [5]

    Lv G H, Man B Y, Zhang Y H, Liu A H, Zhang Q G 2004 OPTIK 115 347

    [6]

    Trelenberg T W, Dinh L N, Saw C K, Stuart B C, Balooch M 2004 Applied Surface Science 221 364

    [7]

    Srivastava P K, Singh A P, Kapoor A 2006 Optics & Laser Technology 38 649

    [8]

    Bi J, Zhang X H, Ni X W 2007 Proceedings of SPIE 6839 683926

    [9]

    Qin Y, Chen Y B, Ni X W, Shen Z H, Bi J, Zhang X H 2010 Optics and Lasers in Engineering 48 361

    [10]

    Wang B, Qin Y, Ni X W, Shen Z H, Lu J 2010 Applied Optics 49 5537

    [11]

    Liu J, Lu J, Ni X W, Dai G, Chen Y B 2010 Chinese Journal of lasers 37 1398 (in Chinese) [刘剑, 陆建, 倪晓武, 戴罡, 陈彦北 2010 中国激光 37 1398]

    [12]

    Bi J, Zhang X H, Ni X W 2011 Acta Phys. Sin. 60 114210 (in Chinese) [毕娟, 张喜和, 倪晓武 2011 物理学报 60 114210]

    [13]

    Bi J, Zhang X H, Ni X W, Jin G Y, Li C L, Xu L J, Chen Y B 2012 Lasers in Engineering 22 37

    [14]

    Ozisik M N (Translated by Yu C M) 1983 Heat conduction (Beijing: Higher Education Press) pp7-8 (in Chinese) [奥奇西克 M N著, 俞昌铭译 1983 热传导 (北京: 高等教育出版社) 第7—8页]

    [15]

    Gospavic R, Sreckovic M, Popov V 2004 Mathematics and Computers in Simulation 65 211

    [16]

    Press W H, Flannery B P, Teukolsky S A, Vetterling W T 1992 Numerical Recipes in FORTRAN 77 (Cambridge University Press)

    [17]

    Meyer J R, Kruer M R, Bartoli F J 1980 J. Appl. Phys. 51 5513

  • [1] 韩名君, 柯导明, 迟晓丽, 王敏, 王保童. 超短沟道MOSFET电势的二维半解析模型. 物理学报, 2013, 62(9): 098502. doi: 10.7498/aps.62.098502
    [2] 王杰, 韩勤, 杨晓红, 倪海桥, 贺继方, 王秀平. 高稳定线性调谐GaAs基波长可调谐共振腔增强型探测器. 物理学报, 2012, 61(1): 018502. doi: 10.7498/aps.61.018502
    [3] 吴宜勇, 岳龙, 胡建民, 蓝慕杰, 肖景东, 杨德庄, 何世禹, 张忠卫, 王训春, 钱勇, 陈鸣波. 位移损伤剂量法评估空间GaAs/Ge太阳电池辐照损伤过程. 物理学报, 2011, 60(9): 098110. doi: 10.7498/aps.60.098110
    [4] 王秀平, 杨晓红, 韩勤, 鞠研玲, 杜云, 朱彬, 王杰, 倪海桥, 贺继方, 王国伟, 牛智川. 图形衬底量子线生长制备与荧光特性研究. 物理学报, 2011, 60(2): 020703. doi: 10.7498/aps.60.020703
    [5] 毕娟, 张喜和, 倪晓武. 长脉冲激光对组成CCD图像传感器的MOS光敏单元的硬破坏机理研究. 物理学报, 2011, 60(11): 114210. doi: 10.7498/aps.60.114210
    [6] 牛军, 张益军, 常本康, 熊雅娟. GaAs光电阴极激活后的表面势垒评估研究. 物理学报, 2011, 60(4): 044210. doi: 10.7498/aps.60.044210
    [7] 彭银生, 叶小玲, 徐波, 牛洁斌, 贾锐, 王占国, 梁松, 杨晓红. 二维GaAs 基光子晶体微腔的制作与光谱特性分析. 物理学报, 2010, 59(10): 7073-7077. doi: 10.7498/aps.59.7073
    [8] 牛军, 杨智, 常本康, 乔建良, 张益军. 反射式变掺杂GaAs光电阴极量子效率模型研究. 物理学报, 2009, 58(7): 5002-5006. doi: 10.7498/aps.58.5002
    [9] 唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊 胜, 黄小龙, 王传珊. 低能质子在半导体材料Si 和GaAs中的非电离能损研究. 物理学报, 2008, 57(2): 1266-1270. doi: 10.7498/aps.57.1266
    [10] 韩 亮, 赵玉清, 张海波. 非平衡磁控溅射系统磁场的半解析法. 物理学报, 2008, 57(2): 996-1000. doi: 10.7498/aps.57.996
    [11] 滕利华, 余华梁, 左方圆, 文锦辉, 林位株, 赖天树. 本征GaAs中电子自旋极化的能量演化研究. 物理学报, 2008, 57(10): 6598-6603. doi: 10.7498/aps.57.6598
    [12] 滕利华, 余华梁, 黄志凌, 文锦辉, 林位株, 赖天树. 本征GaAs中电子自旋极化对电子复合动力学的影响研究. 物理学报, 2008, 57(10): 6593-6597. doi: 10.7498/aps.57.6593
    [13] 刘 霖, 叶玉堂, 吴云峰, 方 亮, 陆佳佳. GaAs表面不同运动状态H2SO4-H2O2-H2O液滴的红外辐射特性. 物理学报, 2007, 56(6): 3172-3177. doi: 10.7498/aps.56.3172
    [14] 徐海红, 焦中兴, 刘晓东, 雷 亮, 文锦辉, 王 惠, 林位株, 赖天树. GaAs中电子g因子的温度和能量依赖性的飞秒激光吸收量子拍研究. 物理学报, 2006, 55(5): 2618-2622. doi: 10.7498/aps.55.2618
    [15] 郭立俊, Jan-Peter Wüstenberg, Andreyev Oleksiy, Michael Bauer, Martin Aeschlimann. 利用飞秒双光子光电子发射研究GaAs(100)的自旋动力学过程. 物理学报, 2005, 54(7): 3200-3205. doi: 10.7498/aps.54.3200
    [16] 陈鸣波, 崔容强, 王亮兴, 张忠卫, 陆剑峰, 池卫英. p-n 型GaInP2/GaAs叠层太阳电池研究. 物理学报, 2004, 53(11): 3632-3636. doi: 10.7498/aps.53.3632
    [17] 袁先漳, 缪中林. Al/GaAs表面量子阱界面层的原位光调制反射光谱研究. 物理学报, 2004, 53(10): 3521-3524. doi: 10.7498/aps.53.3521
    [18] 柳强, 巩马理, 闫平, 贾维溥, 崔瑞祯, 王东生. GaAs被动调Q兼输出耦合Nd∶YVO4激光特性研究. 物理学报, 2002, 51(12): 2756-2760. doi: 10.7498/aps.51.2756
    [19] 金 鹏, 潘士宏, 梁基本. SIN+ GaAs结构中的Franz-Keldysh振荡的傅里叶变换研究. 物理学报, 2000, 49(9): 1821-1828. doi: 10.7498/aps.49.1821
    [20] 离子注入GaAs的脉冲激光退火. 物理学报, 1988, 37(5): 842-846. doi: 10.7498/aps.37.842
计量
  • 文章访问数:  5702
  • PDF下载量:  466
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-02
  • 修回日期:  2012-06-22
  • 刊出日期:  2012-12-05

532nm长脉冲激光致GaAs热分解损伤的半解析法分析

  • 1. 长春理工大学理学院, 长春 130022;
  • 2. 南京理工大学理学院, 南京 210094;
  • 3. 中国兵器科学研究院, 北京 100089
    基金项目: 吉林省科技支撑重点项目(批准号: 2010PT)资助的课题.

摘要: 考虑到GaAs具有受热分解的特性, 采用热传导理论和半解析法研究了波长532 nm的毫秒量级长脉冲激光致GaAs 的表面热分解损伤. 首先, 建立了激光辐照GaAs的二维轴对称瞬态温度场及表面热分解损伤阈值的计算模型, 模拟了吸收率不同时, GaAs的瞬态温度场分布及热分解损伤阈值. 计算结果表明: 较高的吸收率引起GaAs表面的温升较高, 但所需的热分解损伤阈值较低; 增加作用激光能量密度, GaAs表面发生热分解损伤随之提前. 本文研究结果对激光与GaAs相互作用及其损伤机理的研究具有指导意义和实用价值.

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回