搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含有不同硫族元素原子比例的单层MoSSe电化学Pourbaix相图

李艳 马向超 黄曦

引用本文:
Citation:

含有不同硫族元素原子比例的单层MoSSe电化学Pourbaix相图

李艳, 马向超, 黄曦

Electrochemical Pourbaix diagrams of monolayer MoSSe with different atomic ratios of chalcogens

Li Yan, Ma Xiang-Chao, Huang Xi
PDF
HTML
导出引用
  • MoSSe材料是一种非常有前途的光电材料, 它的应用环境会接触到水溶液, 但目前尚未有关MoSSe材料在水溶液中电化学稳定性的研究. 本文基于密度泛函理论构建不同钼、硫和硒元素原子比例的单层MoSSe的Pourbaix图, 研究在不同pH和电极电位条件下的热力学稳定性和电化学腐蚀行为. 对MoSSe的Pourbaix图研究表明, 一部分MoSSe的免蚀区域存在于Pourbaix图中水的稳定区域内, 说明MoSSe在水环境中可以稳定存在; 相比较碱性溶液来说, MoSSe在酸性和中性溶液中的耐腐蚀性更好. 对Mo4S2Se6, Mo4S6Se2, Mo4S7Se和Mo4SSe7的Pourbaix图研究表明, 在不同钼、硫和硒元素原子比例的单层MoSSe中硫的物质的量浓度较高的情况下, 材料在水溶液中可以稳定存在的条件范围变大, 耐腐蚀性变好; 在不同钼、硫和硒元素原子比例的单层MoSSe中硒的物质的量浓度较高的情况下, 材料在水溶液中可以稳定存在的条件范围变小, 耐腐蚀性变差. 本文对不同钼、硫和硒元素原子比例的单层MoSSe在水溶液中的稳定性和腐蚀行为进行预测, 更加深入地探究了MoSSe材料在水溶液中的降解行为, 可以对钼硫硒材料在光电领域的应用提供理论指导.
    MoSSe material is a very promising photoelectric material, and its application environment is aqueous solution. However, there is no research of the electrochemical stability of MoSSe materials in aqueous solution. In this work, the Pourbaix diagrams of monolayer MoSSe with different atomic ratios of molybdenum, sulfur and selenium are constructed based on density functional theory, and the thermodynamic stabilities and electrochemical corrosion behaviors under different pH values and electrode potentials are studied. The study of the pourbaix diagram of MoSSe shows that part of the corrosion-free region of MoSSe exists within the stable region of water in the Pourbaix diagram, indicating that the MoSSe can exist stably in the water environment. Compared with alkaline solutions, MoSSe has good corrosion resistance in acidic solution and neutral solution. The Pourbaix diagram of Mo4S2Se6, Mo4S6Se2, Mo4S7Se and Mo4SSe7 show that in the case of high molar fraction of sulfur in monolayer MoSSe with different atomic ratios of molybdenum, sulfur and selenium, the conditions for the stable existence of materials in aqueous solution can have a larger range, and the corrosion resistance becomes better. In the case of high molar fractions of selenium in monolayer MoSSe with different atomic ratios of molybdenum, sulfur and selenium, the range of conditions for the stable existence of materials in aqueous solution becomes smaller, and the corrosion resistance becomes worse. In this work, the stabilities and corrosion behaviors of monolayer MoSSe with different atomic ratios of molybdenum, sulfur and selenium in aqueous solution are predicted, and the degradation behaviors of MoSSe materials are further explored, which can provide theoretical guidance for the application of MoSSe materials in the field of optoelectronics.
      通信作者: 马向超, xcma@xidian.edu.cn
    • 基金项目: 陕西省自然科学基础研究计划(批准号: 2022JZ-04)和国家自然科学基金(批准号: 11704298, 61904138)资助的课题.
      Corresponding author: Ma Xiang-Chao, xcma@xidian.edu.cn
    • Funds: Project supported by the Natural Science Basic Research Program of Shaanxi Province, China (Grant No. 2022JZ-04), the State Key Development Program for the National Natural Science Foundation of China (Grant Nos. 11704298, 61904138 ) .
    [1]

    Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, Li L J 2017 Nat. Nanotechnol. 12 744Google Scholar

    [2]

    Yin W J, Liu Y, Wen B, Li X B, Chai Y F, Wei X L, Ma S, Teobaldi G 2021 Dalton Trans. 50 10252Google Scholar

    [3]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W B, Guo H, Jin Z H, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [4]

    Paez-Ornelas J I, Ponce-Pérez R, Fernández-Escamilla H N, Hoat D M, Murillo-Bracamontes E A, Moreno-Armenta M G, Galván D H, Guerrero-Sánchez J 2021 Sci. Rep. 11 1Google Scholar

    [5]

    Guan Z Y, Ni S, Hu S L 2018 J. Phys. Chem. C 122 6209Google Scholar

    [6]

    Singh A, Jain M, Bhattacharya S 2021 Nanoscale Adv. 3 2837Google Scholar

    [7]

    Teets T S, Nocera D G 2011 Chem. Commun. 47 9268Google Scholar

    [8]

    Hansen H A, Rossmeisl J, Nørskov J K 2008 Phys. Chem. Chem. Phys. 10 3722Google Scholar

    [9]

    彭少方, 张昭 1992 新疆有色金属 1 28

    Peng S F, Zhang Z 1992 Xinjiang Youse Jinshu 1 28

    [10]

    Beverskog B, Puigdomenech I 1997 Corros. Sci. 39 969Google Scholar

    [11]

    Ding R, Shang J X, Wang F H, Chen Y 2018 Comput. Mater. Sci. 143 431Google Scholar

    [12]

    Huang L F, Rondinelli J M 2015 Phys. Rev. B 92 245126Google Scholar

    [13]

    Dong X X, Wei B, Legut D, Zhang H J, Zhang R F 2021 Phys. Chem. Chem. Phys. 23 19602Google Scholar

    [14]

    Perry S C, Gateman S M, Stephens L I, Lacasse R, Schulz R, Mauzaroll J 2019 J. Electrochem. Soc. 166 3186Google Scholar

    [15]

    Bajdich M, García-Mota M, Vojvodic A, Nørskov J K, Bell A T 2013 J. Am. Chem. Soc. 135 13521Google Scholar

    [16]

    Persson K A, Waldwick B, Lazic P, Ceder G 2012 Phys. Rev. B 85 235438Google Scholar

    [17]

    Chen J, Selloni A 2013 J. Phys. Chem. C 117 20002Google Scholar

    [18]

    Wang L, Maxisch T, Ceder G 2006 Phys. Rev. B 73 195107Google Scholar

    [19]

    Zeng Z H, Chan M K Y, Zhao Z J, Kubal J, Fan D X, Greeley J 2015 J. Phys. Chem. C 119 18177Google Scholar

    [20]

    Exner K S 2017 ChemElectroChem 4 3231Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 80 891Google Scholar

    [22]

    林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高 2021 物理学报 70 138201Google Scholar

    Lin H B, Lin C, Chen Y, Zhong K H, Zhang J M, Xu G G, Huang Z G 2021 Acta Phys. Sin. 70 138201Google Scholar

    [23]

    Zunger A, Wei S H, Ferreira L G, Bernard J E 1990 Phys. Rev. Lett. 65 353Google Scholar

    [24]

    Grau-Crespo R, Hamad S, Catlow C R A, Leeuw N H D 2007 J. Phys. Condens. Matter 19 256201Google Scholar

    [25]

    Sen S, Ghosh H 2016 Eur. Phys. J. B 89 277Google Scholar

    [26]

    Binder K 1981 Phys. Rev. Lett. 47 693Google Scholar

    [27]

    Gale J D 1997 J. Chem. Soc. Faraday Trans. 93 629Google Scholar

    [28]

    Huang L F, Rondinelli J M 2015 Physical Review B 92 245126

    [29]

    Barry T I 1980 ACS Symp. Ser. 133 681

    [30]

    Lee J B 1981 Corrosion 37 467Google Scholar

    [31]

    Muñoz-Portero M J, García-Antón J, Guiñón J L, Pérez-Herranz V 2009 Corros. Sci. 51 807Google Scholar

    [32]

    Nikolaychuk P A, Tyurin A G 2011 Mater. Sci. 24 101

    [33]

    Protopopoff E, Marcus P 2012 Electrochim. Acta 63 22Google Scholar

    [34]

    Wagman D D, Evans W H, Parker V B, Schemm R H, Halow I 1982 J. Phys. Chem. Ref. Data 11 2

    [35]

    Beverskog B, Puigdomenech I 1997 Corrosion Science 39 969

    [36]

    吴雄伟, 彭穗, 冯必钧, 山村朝雄, 矢野贵, 佐藤伊佐務, 刘素琴, 黄可龙 2011 无机化学学报 26 535

    Wu X W, Peng S, Feng B J, Tomoo Y, Yano T, Isamu S, Liu S Q, Huang K L 2011 Chinese J. Inorg. Chem. 26 535

    [37]

    Gana S J, Egiebor N, Ankumah R O 2011 Mater. Sci. Appl. 2 81

    [38]

    Nishimoto M, Muto I, Sugawara Y, Hara N 2019 J. Electrochem. Soc. 166 3081

    [39]

    Choudhary L, Macdonald D D, Alfantazi A 2015 Corrosion 71 1147Google Scholar

    [40]

    Alhasan R, Nasim M J, Jacob C, Gaucher C 2019 Curr. Pharmacol. Rep. 5 163Google Scholar

  • 图 1  计算流程图

    Fig. 1.  Calculation flow chart.

    图 2  MoSSe材料的Pourbaix图(图中不同颜色区域对应可能存在的物质参照表5)

    Fig. 2.  Pourbaix diagram of MoSSe material(Refer to Table 5 for the different colored areas in the figure correspond to possible substances).

    图 3  MoSSe材料在不同pH下吉布斯自由能随电极电位变化图 (a) pH = 0; (b) pH = 7; (c) pH = 14

    Fig. 3.  Diagram of gibbs free energy variation with electrode potential variation of MoSSe material under different conditions: (a) pH = 0; (b) pH = 7; (c) pH = 14.

    图 4  Mo4S2Se6和Mo4SSe7材料的Pourbaix图(图中不同颜色区域对应可能存在的物质参照5) (a) Mo4S2Se6材料; (b) Mo4SSe7材料

    Fig. 4.  Pourbaix diagram of Mo4S2Se6 and Mo4SSe7 materials (Refer to Table 5 for the different colored areas in the figure correspond to possible substances): (a) Mo4S2Se6 material; (b) Mo4S2Se6 material.

    图 5  Mo4S2Se6 (a)和Mo4SSe7 (b)材料在pH = 7条件下吉布斯自由能随电极电位变化图

    Fig. 5.  Diagram of gibbs free energy variation with electrode potential variation of Mo4S2Se6 (a) and Mo4SSe7 (b) materials at pH = 7

    图 6  Mo4S6Se2 (a)和Mo4S7Se (b)材料的Pourbaix图(图中不同颜色区域对应可能存在的物质参照5)

    Fig. 6.  Pourbaix diagram of Mo4S6Se2 (a) and Mo4S7Se (b) materials (Refer to Table 5 for the different colored areas in the figure correspond to possible substances).

    图 7  不同条件下的吉布斯自由能随电极电位变化图 (a) Mo4S6Se2材料在pH = 0时; (b) Mo4S6Se2材料在pH = 7时; (c) Mo4S6Se2材料在pH = 14时; (d) Mo4S7Se材料在pH = 0时; (e) Mo4S7Se材料在pH = 7时; (f) Mo4S7Se材料在pH = 14时

    Fig. 7.  Diagram of Gibbs free energy variation with electrode potential variation under different conditions: (a) Mo4S6Se2 material at pH=0; (b) Mo4S6Se2 material at pH = 7; (c) Mo4S6Se2 material at pH = 14; (d) Mo4S7Se material at pH = 0; (e) Mo4S7Se material at pH = 7; (f) Mo4S7Se material at pH = 14.

    图 8  不同材料的能带结构 (a) Mo4S7Se; (b) Mo4S6Se2; (c) Mo4SSe7; (d) Mo4S2Se6

    Fig. 8.  Band structure of different materials: (a) Mo4S7Se; (b) Mo4S6Se2; (c) Mo4SSe7; (d) Mo4S2Se6.

    图 9  Mo4S7Se, Mo4S6Se2, Mo4S2Se6和Mo4SSe7材料的光吸收系数

    Fig. 9.  Optical absorption coefficients of Mo4S7Se, Mo4S6Se2, Mo4SSe7 and Mo4S2Se6.

    表 1  不同比例MoSSe材料的标准化学势

    Table 1.  Standard chemical potential of MoSSe materials with different proportions.

    物质标准化学势 μ0/eV
    MoSSe–2.21
    Mo4S2Se6–8.357
    Mo4S6Se2–9.721
    Mo4SSe7–7.990
    Mo4S7Se–10.038
    下载: 导出CSV

    表 2  Mo, S和Se元素在水溶液中可能形成的离子状态物质及其标准化学势

    Table 2.  The possible ionic state substance of Mo, S and Se elements in aqueous solution and their standard chemical potentials.

    物质标准化学势μ0/eV文献
    Mo3+–0.60[30]
    MoO42––8.02[31]
    MoO22+–4.24[32]
    S2–0.89[33]
    S22–0.82[34]
    SO32––5.04[34]
    SO42––7.72[33]
    HS0.13[33]
    HSO4–7.84[33]
    HS2O4–6.37[35]
    Se2–1.34[34]
    SeO32––3.83[34]
    SeO42––4.57[34]
    HSe0.46[34]
    HSeO3–4.26[34]
    HSeO4–4.69[34]
    下载: 导出CSV

    表 3  Mo, S和Se元素形成的固态物质的空间群和理论化学势

    Table 3.  The space group and theoretical chemical potentials of solid substances formed by Mo, S and Se elements.

    物质标准化学势μ0/eV空间群
    Mo0${Im} \bar 3m$
    MoO2–5.53${ {{P} }{4_2}/{{mnm} } }$
    MoO3–6.92$P2_1/c$
    S0$P2/c$
    Se0$P2/c$
    MoSe–0.23$P \bar 6 m2$
    MoSe2–6.92$P\bar 3 m1$
    MoS2–2.34$P6_3/mmc$
    下载: 导出CSV

    表 4  Mo, S和Se元素在水溶液中可能形成的溶液状态物质及其标准化学势

    Table 4.  The The possible aqueous state substance of Mo, S and Se elements in aqueous solution and their standard chemical potentials.

    物质标准化学势μ0/eV文献
    H2S(aq)–0.29[33]
    H2SO4(aq)–7.72[34]
    H2Se(aq)0.23[34]
    H2SO3(aq)–4.43[34]
    下载: 导出CSV

    表 5  编号对照表

    Table 5.  Numbering reference table.

    编号物质(溶液中)
    1MoO3 + HSO4 + HSeO4
    2MoO3 + HSO4 + SeO42–
    3MoO3 + SO42– + SeO42–
    4MoO42– + SO42– + SeO42–
    5MoO42– + SO42– + SeO32–
    6MoO3 + SO42– + SeO32–
    7MoO3 + SO42– + HSeO3
    8MoO3 + SO42– + H2SeO3
    9MoO3 + HSO4 + H2SeO3
    10MoO3 + HSO4 + Se
    11MoO3 + SO42– + Se
    12MoO42– + SO42– + Se
    13MoO42– + SO42– + HSe
    14MoO42– + SO42– + Se2–
    15MoO42– + S2– + Se2–
    16MoO42– + S2– + HSe
    17MoO42– + MoSe2 + S2–
    18MoO42– + MoSe2 + SO42–
    19MoO3 + MoSe2 + SO42–
    20MoO3 + MoSe2 + HSO4
    21Mo3+ + HSO4 + Se
    22Mo3+ + MoS2 + Se
    23Mo3+ + MoSe2 + H2S
    24MoSSe
    25Mo + MoSe2 + S2–
    26Mo + MoSe2 + HS
    27Mo + MoSe2 + H2S
    28Mo + H2S + H2Se
    29Mo + H2S + HSe
    30Mo + HS + HSe
    31Mo + S2– + HSe
    32Mo + S2– + Se2–
    33Mo3+ + MoSe2 + HSO4
    34MoO42– + HSe + Mo4S5Se3
    35Mo3+ + Se + Mo4S5Se3
    36Mo + HSe + Mo4S5Se3
    37Mo3+ + Se + Mo4S6Se2
    38MoO3 + Se + Mo4S5Se3
    39Mo4S2Se6
    40MoO42– + MoSe2 + HS
    41MoO2 + MoSe2 + HS
    42MoO3 + MoSe2 + HS
    43Mo4SSe7
    44Mo4S6Se2
    45Mo4S7Se
    46Mo4S5Se3
    下载: 导出CSV
  • [1]

    Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, Li L J 2017 Nat. Nanotechnol. 12 744Google Scholar

    [2]

    Yin W J, Liu Y, Wen B, Li X B, Chai Y F, Wei X L, Ma S, Teobaldi G 2021 Dalton Trans. 50 10252Google Scholar

    [3]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W B, Guo H, Jin Z H, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [4]

    Paez-Ornelas J I, Ponce-Pérez R, Fernández-Escamilla H N, Hoat D M, Murillo-Bracamontes E A, Moreno-Armenta M G, Galván D H, Guerrero-Sánchez J 2021 Sci. Rep. 11 1Google Scholar

    [5]

    Guan Z Y, Ni S, Hu S L 2018 J. Phys. Chem. C 122 6209Google Scholar

    [6]

    Singh A, Jain M, Bhattacharya S 2021 Nanoscale Adv. 3 2837Google Scholar

    [7]

    Teets T S, Nocera D G 2011 Chem. Commun. 47 9268Google Scholar

    [8]

    Hansen H A, Rossmeisl J, Nørskov J K 2008 Phys. Chem. Chem. Phys. 10 3722Google Scholar

    [9]

    彭少方, 张昭 1992 新疆有色金属 1 28

    Peng S F, Zhang Z 1992 Xinjiang Youse Jinshu 1 28

    [10]

    Beverskog B, Puigdomenech I 1997 Corros. Sci. 39 969Google Scholar

    [11]

    Ding R, Shang J X, Wang F H, Chen Y 2018 Comput. Mater. Sci. 143 431Google Scholar

    [12]

    Huang L F, Rondinelli J M 2015 Phys. Rev. B 92 245126Google Scholar

    [13]

    Dong X X, Wei B, Legut D, Zhang H J, Zhang R F 2021 Phys. Chem. Chem. Phys. 23 19602Google Scholar

    [14]

    Perry S C, Gateman S M, Stephens L I, Lacasse R, Schulz R, Mauzaroll J 2019 J. Electrochem. Soc. 166 3186Google Scholar

    [15]

    Bajdich M, García-Mota M, Vojvodic A, Nørskov J K, Bell A T 2013 J. Am. Chem. Soc. 135 13521Google Scholar

    [16]

    Persson K A, Waldwick B, Lazic P, Ceder G 2012 Phys. Rev. B 85 235438Google Scholar

    [17]

    Chen J, Selloni A 2013 J. Phys. Chem. C 117 20002Google Scholar

    [18]

    Wang L, Maxisch T, Ceder G 2006 Phys. Rev. B 73 195107Google Scholar

    [19]

    Zeng Z H, Chan M K Y, Zhao Z J, Kubal J, Fan D X, Greeley J 2015 J. Phys. Chem. C 119 18177Google Scholar

    [20]

    Exner K S 2017 ChemElectroChem 4 3231Google Scholar

    [21]

    Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 80 891Google Scholar

    [22]

    林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高 2021 物理学报 70 138201Google Scholar

    Lin H B, Lin C, Chen Y, Zhong K H, Zhang J M, Xu G G, Huang Z G 2021 Acta Phys. Sin. 70 138201Google Scholar

    [23]

    Zunger A, Wei S H, Ferreira L G, Bernard J E 1990 Phys. Rev. Lett. 65 353Google Scholar

    [24]

    Grau-Crespo R, Hamad S, Catlow C R A, Leeuw N H D 2007 J. Phys. Condens. Matter 19 256201Google Scholar

    [25]

    Sen S, Ghosh H 2016 Eur. Phys. J. B 89 277Google Scholar

    [26]

    Binder K 1981 Phys. Rev. Lett. 47 693Google Scholar

    [27]

    Gale J D 1997 J. Chem. Soc. Faraday Trans. 93 629Google Scholar

    [28]

    Huang L F, Rondinelli J M 2015 Physical Review B 92 245126

    [29]

    Barry T I 1980 ACS Symp. Ser. 133 681

    [30]

    Lee J B 1981 Corrosion 37 467Google Scholar

    [31]

    Muñoz-Portero M J, García-Antón J, Guiñón J L, Pérez-Herranz V 2009 Corros. Sci. 51 807Google Scholar

    [32]

    Nikolaychuk P A, Tyurin A G 2011 Mater. Sci. 24 101

    [33]

    Protopopoff E, Marcus P 2012 Electrochim. Acta 63 22Google Scholar

    [34]

    Wagman D D, Evans W H, Parker V B, Schemm R H, Halow I 1982 J. Phys. Chem. Ref. Data 11 2

    [35]

    Beverskog B, Puigdomenech I 1997 Corrosion Science 39 969

    [36]

    吴雄伟, 彭穗, 冯必钧, 山村朝雄, 矢野贵, 佐藤伊佐務, 刘素琴, 黄可龙 2011 无机化学学报 26 535

    Wu X W, Peng S, Feng B J, Tomoo Y, Yano T, Isamu S, Liu S Q, Huang K L 2011 Chinese J. Inorg. Chem. 26 535

    [37]

    Gana S J, Egiebor N, Ankumah R O 2011 Mater. Sci. Appl. 2 81

    [38]

    Nishimoto M, Muto I, Sugawara Y, Hara N 2019 J. Electrochem. Soc. 166 3081

    [39]

    Choudhary L, Macdonald D D, Alfantazi A 2015 Corrosion 71 1147Google Scholar

    [40]

    Alhasan R, Nasim M J, Jacob C, Gaucher C 2019 Curr. Pharmacol. Rep. 5 163Google Scholar

  • [1] 王静, 高姗, 段香梅, 尹万健. 钙钛矿太阳能电池材料缺陷对器件性能与稳定性的影响. 物理学报, 2024, 73(6): 063101. doi: 10.7498/aps.73.20231631
    [2] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [3] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响. 物理学报, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [4] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究. 物理学报, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [5] 王丹, 邹娟, 唐黎明. 氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究. 物理学报, 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [6] 宋庆功, 王丽杰, 朱燕霞, 康建海, 顾威风, 王明超, 刘志锋. 硅和钇双掺杂对γ-TiAl基合金稳定性和抗氧化性的影响. 物理学报, 2019, 68(19): 196101. doi: 10.7498/aps.68.20190490
    [7] 陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林. 双层h-BN/Graphene结构稳定性及其掺杂特性的第一性原理研究. 物理学报, 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [8] 杨建辉, 陈言星, 吴丽慧, 韦世豪. MC与Mn+1ACn稳定性与电子特征的第一性原理研究. 物理学报, 2014, 63(23): 237301. doi: 10.7498/aps.63.237301
    [9] 杨秀峰, 刘谋斌. 光滑粒子动力学SPH方法应力不稳定性的一种改进方案. 物理学报, 2012, 61(22): 224701. doi: 10.7498/aps.61.224701
    [10] 程志达, 朱静, 孙铁昱. 面心立方单晶镍纳米线稳定性及磁性的第一性原理计算. 物理学报, 2011, 60(3): 037504. doi: 10.7498/aps.60.037504
    [11] 陈海军, 李高清, 薛具奎. 变分法研究一维Bose-Fermi系统的稳定性. 物理学报, 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.1
    [12] 刘浩然, 朱占龙, 时培明. 一类相对转动时滞非线性动力系统的稳定性分析. 物理学报, 2010, 59(10): 6770-6777. doi: 10.7498/aps.59.6770
    [13] 刘爽, 刘彬, 张业宽, 闻岩. 一类时滞非线性相对转动系统的Hopf分岔与周期解的稳定性. 物理学报, 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [14] 孟 宗, 刘 彬. 一类非线性相对转动动力系统的平衡稳定性及组合谐波近似解. 物理学报, 2008, 57(3): 1329-1334. doi: 10.7498/aps.57.1329
    [15] 时培明, 刘 彬, 刘 爽. 一类谐波激励相对转动非线性动力系统的稳定性与近似解. 物理学报, 2008, 57(8): 4675-4684. doi: 10.7498/aps.57.4675
    [16] 王作雷. 一类简化Lang-Kobayashi方程的Hopf分岔及其稳定性. 物理学报, 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [17] 孟 宗, 刘 彬. 相对转动非线性动力学方程的稳定性及在一类非线性弹性系数下的解. 物理学报, 2007, 56(11): 6194-6198. doi: 10.7498/aps.56.6194
    [18] 谢 莉, 雷银照. 线性瞬态涡流电磁场定解问题解的唯一性和稳定性. 物理学报, 2006, 55(9): 4397-4406. doi: 10.7498/aps.55.4397
    [19] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性. 物理学报, 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [20] 张 凯, 冯 俊. 相对论Birkhoff系统的对称性与稳定性. 物理学报, 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
计量
  • 文章访问数:  5085
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-02
  • 修回日期:  2022-12-04
  • 上网日期:  2022-12-28
  • 刊出日期:  2023-02-20

/

返回文章
返回