搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气湍流中光束的高阶强度矩

李晓庆 季小玲 朱建华

引用本文:
Citation:

大气湍流中光束的高阶强度矩

李晓庆, 季小玲, 朱建华

Higher-order intensity moments of optical beams in atmospheric turbulence

Li Xiao-Qing, Ji Xiao-Ling, Zhu Jian-Hua
PDF
导出引用
  • 研究了光束通过大气湍流传输的高阶强度矩, 提出了大气湍流中光束高阶强度矩的推导方法, 并推导出了一至四阶光束强度矩传输的解析表达式. 所得结果具有一般性,任意某一光束在自由空间和大气湍流中传输的高阶强度矩均可作为本文结果的特例. 另一方面, 以高斯光束为例, 研究了其K参数在湍流大气中的传输规律. 研究表明,高斯光束在大气湍流中其K参数并不是一个传输不变量,它与传输距离、束腰半径、湍流内外尺度以及湍流强度均有关.这个结论与采用Rytov相位结构函数二次近似或强湍流近似下的结论不同,本文给出了合理解释.
    The higher-order intensity moments of optical beams propagating through atmospheric turbulence are studied in the paper. The method to derive higher-order intensity moments in atmospheric turbulence is proposed, and the simple expressions for intensity moments up to the fourth-order are derived. The results obtained in this paper are general, which can reduce to higher-order intensity moments of an arbitrary optical beam propagating in both free space and turbulence. Taking the Gaussian beam for example, the propagation of the kurtosis parameter in atmospheric turbulence is studied. It is shown that the kurtosis parameter of Gaussian beams is not a propagation invariant in atmospheric turbulence, which depends on propagation distance, waist width, inner and outer scales of turbulence and refraction index structure constant. This result is different from that obtained by using the quadratic approximation of Rytov’s phase structure function or the strong fluctuation condition of turbulence. The reasonable explanations for the differences are given in this paper.
    • 基金项目: 国家自然科学基金(批准号:61178070)和中国科学院大气成分与光学重点实验室开放基金(批准号:JJ-10-08)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61178070) and the Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation of Chinese Academy of Sciences (Grant No. JJ-10-08).
    [1]

    Weber H 1992 Opt. Quant. Elect. 24 1027

    [2]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (2nd Ed.) (Bellingham: SPIE)

    [3]

    Yuan Y, Cai Y, Eyyuboğlu H T, Baykal Y, Korotkova O 2009 Opt. Express 17 17344

    [4]

    Wu G, Guo H, Yu S, Luo B 2010 Opt. Lett. 35 715

    [5]

    Zhou G 2011 Opt. Express 19 45

    [6]

    Ji X L, Li X Q 2011 Appl. Phys. B 104 207

    [7]

    Ji X L, Li X Q, Ji G M 2011 New J. Phys. 13 103006

    [8]

    Mao H, Zhao D M 2010 Opt. Express 18 1741

    [9]

    Pu J X, Korotkova O 2009 Opt. Commun. 282 1691

    [10]

    Dou L Y, Ji X L, Li P 2012 Opt. Express 20 8417

    [11]

    Liu F, Ji X L 2011 Acta Phys. Sin. 60 014216 (in Chinese) [刘飞, 季小玲 2011 物理学报 60 014216]

    [12]

    Zhao G Y, Zhang Y X, Wang J Y, Jia J J 2010 Acta Phys. Sin. 59 1378 (in Chinese) [赵贵燕, 张逸新, 王建宇, 贾建军 2010 物理学报 59 1378]

    [13]

    Chu X 2011 Chin. Phys. B 20 014207

    [14]

    Pu J X, Wang T, Lin H C, Li C L 2010 Chin. Phys. B 19 089201

    [15]

    Dan Y, Zhang B 2009 Opt. Lett. 34 563

    [16]

    Chu X, Qiao C, Feng X 2011 Appl. Phys. B 105 909

    [17]

    Chu X 2011 Opt. Lett. 36 2701

    [18]

    Lohmann A W 1993 J. Opt. Soc. Am. A 10 2181

    [19]

    Gradshteyn I S, Ryzhik I M 2007 Table of Integrals, Series, and Products (7th Ed.) (New York: Academic Press)

    [20]

    Piquero G, Mejias P M, Martinez-Herrero R 1993 Proceedings of the Workshop on Laser Beam Characterization (Madrid: Optical Society of Spain)

    [21]

    Leader J C 1978 J. Opt. Soc. Am. A 681 75

    [22]

    Wang S C H, Plonus M A 1979 J. Opt. Soc. Am. A 69 1297

    [23]

    Ji X L, Li X Q 2009 J. Opt. Soc. Am. A 26 236

    [24]

    Ji X L, Zhang E T, L B D 2006 Opt. Commun. 259 1

    [25]

    Li X Q, Zhao Q, Ji X L 2011 Acta Opt. Sin. 31 1201002 (in Chinese) [李晓庆, 赵琦, 季小玲 2011 光学学报 31 1201002]

  • [1]

    Weber H 1992 Opt. Quant. Elect. 24 1027

    [2]

    Andrews L C, Phillips R L 2005 Laser Beam Propagation through Random Media (2nd Ed.) (Bellingham: SPIE)

    [3]

    Yuan Y, Cai Y, Eyyuboğlu H T, Baykal Y, Korotkova O 2009 Opt. Express 17 17344

    [4]

    Wu G, Guo H, Yu S, Luo B 2010 Opt. Lett. 35 715

    [5]

    Zhou G 2011 Opt. Express 19 45

    [6]

    Ji X L, Li X Q 2011 Appl. Phys. B 104 207

    [7]

    Ji X L, Li X Q, Ji G M 2011 New J. Phys. 13 103006

    [8]

    Mao H, Zhao D M 2010 Opt. Express 18 1741

    [9]

    Pu J X, Korotkova O 2009 Opt. Commun. 282 1691

    [10]

    Dou L Y, Ji X L, Li P 2012 Opt. Express 20 8417

    [11]

    Liu F, Ji X L 2011 Acta Phys. Sin. 60 014216 (in Chinese) [刘飞, 季小玲 2011 物理学报 60 014216]

    [12]

    Zhao G Y, Zhang Y X, Wang J Y, Jia J J 2010 Acta Phys. Sin. 59 1378 (in Chinese) [赵贵燕, 张逸新, 王建宇, 贾建军 2010 物理学报 59 1378]

    [13]

    Chu X 2011 Chin. Phys. B 20 014207

    [14]

    Pu J X, Wang T, Lin H C, Li C L 2010 Chin. Phys. B 19 089201

    [15]

    Dan Y, Zhang B 2009 Opt. Lett. 34 563

    [16]

    Chu X, Qiao C, Feng X 2011 Appl. Phys. B 105 909

    [17]

    Chu X 2011 Opt. Lett. 36 2701

    [18]

    Lohmann A W 1993 J. Opt. Soc. Am. A 10 2181

    [19]

    Gradshteyn I S, Ryzhik I M 2007 Table of Integrals, Series, and Products (7th Ed.) (New York: Academic Press)

    [20]

    Piquero G, Mejias P M, Martinez-Herrero R 1993 Proceedings of the Workshop on Laser Beam Characterization (Madrid: Optical Society of Spain)

    [21]

    Leader J C 1978 J. Opt. Soc. Am. A 681 75

    [22]

    Wang S C H, Plonus M A 1979 J. Opt. Soc. Am. A 69 1297

    [23]

    Ji X L, Li X Q 2009 J. Opt. Soc. Am. A 26 236

    [24]

    Ji X L, Zhang E T, L B D 2006 Opt. Commun. 259 1

    [25]

    Li X Q, Zhao Q, Ji X L 2011 Acta Opt. Sin. 31 1201002 (in Chinese) [李晓庆, 赵琦, 季小玲 2011 光学学报 31 1201002]

计量
  • 文章访问数:  3869
  • PDF下载量:  527
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-14
  • 修回日期:  2012-09-21
  • 刊出日期:  2013-02-05

大气湍流中光束的高阶强度矩

  • 1. 四川大学物理科学与技术学院, 成都 610064;
  • 2. 四川师范大学物理学院, 成都 610068
    基金项目: 国家自然科学基金(批准号:61178070)和中国科学院大气成分与光学重点实验室开放基金(批准号:JJ-10-08)资助的课题.

摘要: 研究了光束通过大气湍流传输的高阶强度矩, 提出了大气湍流中光束高阶强度矩的推导方法, 并推导出了一至四阶光束强度矩传输的解析表达式. 所得结果具有一般性,任意某一光束在自由空间和大气湍流中传输的高阶强度矩均可作为本文结果的特例. 另一方面, 以高斯光束为例, 研究了其K参数在湍流大气中的传输规律. 研究表明,高斯光束在大气湍流中其K参数并不是一个传输不变量,它与传输距离、束腰半径、湍流内外尺度以及湍流强度均有关.这个结论与采用Rytov相位结构函数二次近似或强湍流近似下的结论不同,本文给出了合理解释.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回