搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于贝叶斯网络的认知引擎设计与重配置

王娇 周云辉 黄玉清 江虹

引用本文:
Citation:

基于贝叶斯网络的认知引擎设计与重配置

王娇, 周云辉, 黄玉清, 江虹

Design and reconfiguration of cognitive engine based on Bayesian network

Wang Jiao, Zhou Yun-Hui, Huang Yu-Qing, Jiang Hong
PDF
导出引用
  • 以往的通信行为指导系统未来通信, 以满足用户需求并适应环境变化, 是认知无线电系统的核心所在, 为此提出了一种基于贝叶斯网络的认知引擎, 用于解决在复杂多变的电磁环境与用户需求条件下, 认知无线电系统参数自适应调整的问题. 通过对系统过去通信行为样本数据, 进行结构学习和参数学习建立认知引擎, 将系统当前环境状态和用户需求信息经预处理作为推理的证据, 应用引擎决策出系统此时最佳的工作参数, 完成系统参数重构. 本文利用OPNET工具建立一个移动无线网络完成仿真实验, 仿真结果表明该认知引擎能有效地使移动无线网络适应环境变化, 改善端到端通信性能, 进一步验证了建模方法的可行性.
    The past communication behaviors that guide the system communication in the future to satisfy the requirements of users and adapt to the changes of environment are the core part of cognitive radio system. In this paper, a cognitive engine based on Bayesian network is proposed to solve the parameters self-adaptive-adjusting problem of cognitive radio system under the complicated and highly varying radio environment and user requirement. Through structure learning and parameter learning of the sample data from the past communication behaviors, cognitive engine is established. The states of radio environment and requirements of users are made as inference evidences by data preprocessing, and the cognitive engine is used to make decision of the configuration parameters of communication system, and then the reconfiguration system is completed. A mobile wireless network is modeled to finish reconfiguration simulation using OPNET tool in this paper. Simulation results show that the proposed cognitive engine can make the wireless mobile network adapt to environment and effectively improve end-to-end communication performance. The feasibility of the method to model cognitive engine with Bayesian network is validated in this paper.
    • 基金项目: 国家自然科学基金 (批准号: 61072138)和四川省科技厅应用基础研究项目 (批准号: 2010JY0173) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61072138) and Application Fundamental Research Project of the Techonology Deparment of Sichuan Province, China (Grant No. 2010JY0173).
    [1]

    Joseph M III 2000 Ph. D. Dissertation (Royal Institute of Technology)

    [2]

    Haykin S 2005 IEEE Journal on Selected Areas in Communications 23 201

    [3]

    Thomas W R Ph. D. Dissertation (Virginia Polytechnic Institute and State University)

    [4]

    Zhao Z J, Zheng S L, Shang J N, Kong X Z 2007 Acta Phys. Sin. 56 6760 (in Chinese) [赵知劲, 郑仕链, 尚俊娜, 孔宪正 2007 物理学报 56 6760]

    [5]

    Jiao C H, Wang K R 2010 Systems Engineering and Electronics 32 1083 (in Chinese) [焦传海, 王可人 2010 系统工程与电子技术 32 1083]

    [6]

    Zhao Z J, Xu S Y, Zheng S L, Yang X N 2009 Acta Phys. Sin. 58 5118 (in Chinese) 赵知劲, 徐世宇, 郑仕链, 杨小牛 2009 物理学报 58 5118]

    [7]

    Katidiotis A, Tsagkaris K, Demestichas P 2010 Computers & Electrical Engineering 36 518

    [8]

    Feng W J, Liu Z, Qin C L 2011 Pattern Recognition and Artificial Intelligence 24 401 (in Chinese) [冯文江, 刘震, 秦春玲 2011 模式识别与人工智能 24 401]

    [9]

    Jiang H, Ma J H, Huang Y H, Wu C 2011 Journal of Xi Dian University 38 139 (in Chinese) [江虹, 马景辉, 黄玉清, 伍春 2011 西安电子科技大学学报 38 139]

    [10]

    Jiang H, Wu C, Ma J H 2011 Journal of University of Electronic Science and Technology of China 40 41 (in Chinese) [江虹, 伍春, 马景辉 2011 电子科技大学学报 40 41]

    [11]

    Asma A, Badr B, Francine K, Fethi T B 2012 International Journal of Distributed and Parallel Systems 3 91

    [12]

    Jensen F V, Nielsen T D 2007 Bayesian Networks and Decision Graphs (New York: Springer Verlag)

  • [1]

    Joseph M III 2000 Ph. D. Dissertation (Royal Institute of Technology)

    [2]

    Haykin S 2005 IEEE Journal on Selected Areas in Communications 23 201

    [3]

    Thomas W R Ph. D. Dissertation (Virginia Polytechnic Institute and State University)

    [4]

    Zhao Z J, Zheng S L, Shang J N, Kong X Z 2007 Acta Phys. Sin. 56 6760 (in Chinese) [赵知劲, 郑仕链, 尚俊娜, 孔宪正 2007 物理学报 56 6760]

    [5]

    Jiao C H, Wang K R 2010 Systems Engineering and Electronics 32 1083 (in Chinese) [焦传海, 王可人 2010 系统工程与电子技术 32 1083]

    [6]

    Zhao Z J, Xu S Y, Zheng S L, Yang X N 2009 Acta Phys. Sin. 58 5118 (in Chinese) 赵知劲, 徐世宇, 郑仕链, 杨小牛 2009 物理学报 58 5118]

    [7]

    Katidiotis A, Tsagkaris K, Demestichas P 2010 Computers & Electrical Engineering 36 518

    [8]

    Feng W J, Liu Z, Qin C L 2011 Pattern Recognition and Artificial Intelligence 24 401 (in Chinese) [冯文江, 刘震, 秦春玲 2011 模式识别与人工智能 24 401]

    [9]

    Jiang H, Ma J H, Huang Y H, Wu C 2011 Journal of Xi Dian University 38 139 (in Chinese) [江虹, 马景辉, 黄玉清, 伍春 2011 西安电子科技大学学报 38 139]

    [10]

    Jiang H, Wu C, Ma J H 2011 Journal of University of Electronic Science and Technology of China 40 41 (in Chinese) [江虹, 伍春, 马景辉 2011 电子科技大学学报 40 41]

    [11]

    Asma A, Badr B, Francine K, Fethi T B 2012 International Journal of Distributed and Parallel Systems 3 91

    [12]

    Jensen F V, Nielsen T D 2007 Bayesian Networks and Decision Graphs (New York: Springer Verlag)

计量
  • 文章访问数:  2485
  • PDF下载量:  674
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-24
  • 修回日期:  2012-08-19
  • 刊出日期:  2013-02-05

基于贝叶斯网络的认知引擎设计与重配置

  • 1. 西南科技大学信息工程学院, 绵阳 621010
    基金项目: 

    国家自然科学基金 (批准号: 61072138)和四川省科技厅应用基础研究项目 (批准号: 2010JY0173) 资助的课题.

摘要: 以往的通信行为指导系统未来通信, 以满足用户需求并适应环境变化, 是认知无线电系统的核心所在, 为此提出了一种基于贝叶斯网络的认知引擎, 用于解决在复杂多变的电磁环境与用户需求条件下, 认知无线电系统参数自适应调整的问题. 通过对系统过去通信行为样本数据, 进行结构学习和参数学习建立认知引擎, 将系统当前环境状态和用户需求信息经预处理作为推理的证据, 应用引擎决策出系统此时最佳的工作参数, 完成系统参数重构. 本文利用OPNET工具建立一个移动无线网络完成仿真实验, 仿真结果表明该认知引擎能有效地使移动无线网络适应环境变化, 改善端到端通信性能, 进一步验证了建模方法的可行性.

English Abstract

参考文献 (12)

目录

    /

    返回文章
    返回