搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

耦合分数阶布朗马达在非对称势中的输运

王飞 邓翠 屠浙 马洪

引用本文:
Citation:

耦合分数阶布朗马达在非对称势中的输运

王飞, 邓翠, 屠浙, 马洪

Transport of fractional coupled Brownian motor in asymmetric periodic potential

Wang Fei, Deng Cui, Tu Zhe, Ma Hong
PDF
导出引用
  • 讨论了分数阶Frenkel-Kontorova模型的物理意义, 并应用该模型刻画了耦合粒子链在记忆性介质中的输运现象, 研究了各参数对粒子链运动状态的影响. 数值仿真结果表明: 系统的记忆性对粒子链的运动有显著影响, 尤其出现了在非记忆性情况下所不具有的反向流. 同时发现粒子链的平均流速会随耦合强度、分数阶的阶数变化而产生广义共振; 此外, 平均流速还会随噪声强度的变化出现广义随机共振现象.
    In this paper, we first discuss the physical meaning of the fractional Frenkel-Kontorova model and depict the transport phenomenon of elastically coupled particles in a memorable medium, then give the effects of various parameters on the motion of coupled particles. According to the numerical value, the memory effect of system has a significant influence on the motion of coupled particles, in addition, the current reversal which does not exist in a non-memorable system appears, this is an abnormal phenomenon. What is more in this research we find that there appears the generalized resonance in the system mean velocity as the spring constant and the fractional order are varied, and the generalized stochastic resonance will appear with noise intensity changing.
    • 基金项目: 国家自然科学基金(批准号:11171238)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11171238).
    [1]

    Hänggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387

    [2]

    Qian M, Wang Y, Zhang X J 2003 Chin. Phys. Lett. 20 810

    [3]

    Ai B Q, He Y F 2010 J. Chem. Phys. 132 094504

    [4]

    Wang H Y, Bao J D 2004 Physica A 337 13

    [5]

    Csahók Z, Family F, Vicsek T 1997 Phys. Rev. E 55 5179

    [6]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [7]

    Kumar K V, Ramaswamy S, Rao M 2008 Phys. Rev. E 77 020102

    [8]

    Gehlen S V, Evstigneev M, Reimann P 2009 Phys. Rev. E 79 031114

    [9]

    Fendrik A J, Romanelli L 2012 Phys. Rev. E 85 041149

    [10]

    Zheng Z G 2004 Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems (Beijing: Higher Education Press) p279 (in Chinese) [郑志刚 2004 耦合非线性系统的时空动力学与合作行为 (北京: 高等教育出版社) 第279页]

    [11]

    Vadakkepatt A, Dong Y L, Lichter S, Martini A 2011 Phys. Rev. E 84 066311

    [12]

    Nishikawa M, Takagi H, Shibata T, Iwane A H, Yanagida T 2008 Phys. Rev. Lett. 101 128103

    [13]

    Campás O, Kafri Y, Zeldovich K B, Casademunt J, Joanny J F 2006 Phys. Rev. Lett. 97 038101

    [14]

    Liu F, Anh V V, Turner I, Zhuang P 2003 J. Appl. Math. Comp. 13 233

    [15]

    de Andrade M F, Lenzi E K, Evangelista L R, Mendes R S, Malacarne L C 2005 Phys. Lett. A 347 160

    [16]

    Braun O M, Kivshar Y S 2004 The Frenkel-Kontorova Model: Concepts, Methods and Application (New York: Springer)

    [17]

    Han X Q, Jiang H, Shi Y R, Liu Y X, Sun J H, Chen J M, Duan W S 2011 Acta Phys. Sin. 60 116801 (in Chinese) [韩秀琴, 姜虹, 石玉仁, 刘妍秀, 孙建华, 陈建敏, 段文山 2011 物理学报 60 116801]

    [18]

    Bao J D 2009 Random Simulation Method of Classical and Quantum Dissipation System (Beijing: Science Press) p80 (in Chinese) [包景东 2009经典和量子耗散系统的随机模拟方法(北京: 科学出版社)第80页]

    [19]

    Oldham K B, Spanier J 1974 The Fractional Calculus (New York: Academic Press)

    [20]

    Kou S C, Xie X S 2004 Phys. Rev. Lett. 93 180603

    [21]

    Gao S L, Zhong S C, Wei K, Ma H 2012 Acta Phys. Sin. 61 100502 (in Chinese) [高仕龙, 钟苏川, 韦鹍, 马洪 2012 物理学报 61 100502]

    [22]

    Podlubny I 1999 Fractional Differential Equations (San Diegop, CA: Academic Press)

    [23]

    Samko S G, Kilbas A A, Marichev O I 1993 Fractional Integrals and Derivatives Theory and Applications (New York: Gordon and Breach Science Publisher)

  • [1]

    Hänggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387

    [2]

    Qian M, Wang Y, Zhang X J 2003 Chin. Phys. Lett. 20 810

    [3]

    Ai B Q, He Y F 2010 J. Chem. Phys. 132 094504

    [4]

    Wang H Y, Bao J D 2004 Physica A 337 13

    [5]

    Csahók Z, Family F, Vicsek T 1997 Phys. Rev. E 55 5179

    [6]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [7]

    Kumar K V, Ramaswamy S, Rao M 2008 Phys. Rev. E 77 020102

    [8]

    Gehlen S V, Evstigneev M, Reimann P 2009 Phys. Rev. E 79 031114

    [9]

    Fendrik A J, Romanelli L 2012 Phys. Rev. E 85 041149

    [10]

    Zheng Z G 2004 Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems (Beijing: Higher Education Press) p279 (in Chinese) [郑志刚 2004 耦合非线性系统的时空动力学与合作行为 (北京: 高等教育出版社) 第279页]

    [11]

    Vadakkepatt A, Dong Y L, Lichter S, Martini A 2011 Phys. Rev. E 84 066311

    [12]

    Nishikawa M, Takagi H, Shibata T, Iwane A H, Yanagida T 2008 Phys. Rev. Lett. 101 128103

    [13]

    Campás O, Kafri Y, Zeldovich K B, Casademunt J, Joanny J F 2006 Phys. Rev. Lett. 97 038101

    [14]

    Liu F, Anh V V, Turner I, Zhuang P 2003 J. Appl. Math. Comp. 13 233

    [15]

    de Andrade M F, Lenzi E K, Evangelista L R, Mendes R S, Malacarne L C 2005 Phys. Lett. A 347 160

    [16]

    Braun O M, Kivshar Y S 2004 The Frenkel-Kontorova Model: Concepts, Methods and Application (New York: Springer)

    [17]

    Han X Q, Jiang H, Shi Y R, Liu Y X, Sun J H, Chen J M, Duan W S 2011 Acta Phys. Sin. 60 116801 (in Chinese) [韩秀琴, 姜虹, 石玉仁, 刘妍秀, 孙建华, 陈建敏, 段文山 2011 物理学报 60 116801]

    [18]

    Bao J D 2009 Random Simulation Method of Classical and Quantum Dissipation System (Beijing: Science Press) p80 (in Chinese) [包景东 2009经典和量子耗散系统的随机模拟方法(北京: 科学出版社)第80页]

    [19]

    Oldham K B, Spanier J 1974 The Fractional Calculus (New York: Academic Press)

    [20]

    Kou S C, Xie X S 2004 Phys. Rev. Lett. 93 180603

    [21]

    Gao S L, Zhong S C, Wei K, Ma H 2012 Acta Phys. Sin. 61 100502 (in Chinese) [高仕龙, 钟苏川, 韦鹍, 马洪 2012 物理学报 61 100502]

    [22]

    Podlubny I 1999 Fractional Differential Equations (San Diegop, CA: Academic Press)

    [23]

    Samko S G, Kilbas A A, Marichev O I 1993 Fractional Integrals and Derivatives Theory and Applications (New York: Gordon and Breach Science Publisher)

  • [1] 许鹏飞, 公徐路, 李毅伟, 靳艳飞. 含记忆阻尼函数的周期势系统随机共振. 物理学报, 2022, 71(8): 080501. doi: 10.7498/aps.71.20211732
    [2] 彭皓, 任芮彬, 钟扬帆, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象. 物理学报, 2022, 71(3): 030502. doi: 10.7498/aps.71.20211272
    [3] 彭皓, 任芮彬, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211272
    [4] 杨建强, 马洪, 钟苏川. 分数阶对数耦合系统在非周期外力作用下的定向输运现象. 物理学报, 2015, 64(17): 170501. doi: 10.7498/aps.64.170501
    [5] 刘德浩, 任芮彬, 杨博, 罗懋康. 涨落作用下周期驱动的分数阶过阻尼棘轮模型的混沌输运现象. 物理学报, 2015, 64(22): 220501. doi: 10.7498/aps.64.220501
    [6] 谢文贤, 李东平, 许鹏飞, 蔡力, 靳艳飞. 具有固有频率涨落的记忆阻尼线性系统的随机共振. 物理学报, 2014, 63(10): 100502. doi: 10.7498/aps.63.100502
    [7] 靳艳飞, 李贝. 色关联的乘性和加性色噪声激励下分段非线性模型的随机共振. 物理学报, 2014, 63(21): 210501. doi: 10.7498/aps.63.210501
    [8] 王飞, 谢天婷, 邓翠, 罗懋康. 系统非对称性及记忆性对布朗马达输运行为的影响. 物理学报, 2014, 63(16): 160502. doi: 10.7498/aps.63.160502
    [9] 董小娟, 晏爱君. 双稳态系统中随机共振和相干共振的相关性. 物理学报, 2013, 62(7): 070501. doi: 10.7498/aps.62.070501
    [10] 田祥友, 冷永刚, 范胜波. 一阶线性系统的调参随机共振研究. 物理学报, 2013, 62(2): 020505. doi: 10.7498/aps.62.020505
    [11] 白文斯密, 彭皓, 屠浙, 马洪. 分数阶Brown马达及其定向输运现象. 物理学报, 2012, 61(21): 210501. doi: 10.7498/aps.61.210501
    [12] 王林泽, 赵文礼, 陈旋. 基于随机共振原理的分段线性模型的理论分析与实验研究. 物理学报, 2012, 61(16): 160501. doi: 10.7498/aps.61.160501
    [13] 张路, 钟苏川, 彭皓, 罗懋康. 乘性二次噪声驱动的线性过阻尼振子的随机共振. 物理学报, 2012, 61(13): 130503. doi: 10.7498/aps.61.130503
    [14] 高仕龙, 钟苏川, 韦鹍, 马洪. 过阻尼分数阶Langevin方程及其随机共振. 物理学报, 2012, 61(10): 100502. doi: 10.7498/aps.61.100502
    [15] 张良英, 金国祥, 曹力. 具有频率噪声的单模激光线性模型随机共振. 物理学报, 2011, 60(4): 044207. doi: 10.7498/aps.60.044207
    [16] 汪茂胜. 二维映射神经元模型中频率依赖的随机共振. 物理学报, 2009, 58(10): 6833-6837. doi: 10.7498/aps.58.6833
    [17] 郭立敏, 徐 伟, 阮春蕾, 赵 燕. 二值噪声驱动下二阶线性系统的随机共振. 物理学报, 2008, 57(12): 7482-7486. doi: 10.7498/aps.57.7482
    [18] 张良英, 金国祥, 曹 力. 调频信号的单模激光线性模型随机共振. 物理学报, 2008, 57(8): 4706-4711. doi: 10.7498/aps.57.4706
    [19] 张良英, 曹 力, 金国祥. 调幅波的单模激光线性模型随机共振. 物理学报, 2006, 55(12): 6238-6242. doi: 10.7498/aps.55.6238
    [20] 靳艳飞, 徐 伟, 李 伟, 徐 猛. 具有周期信号调制噪声的线性模型的随机共振. 物理学报, 2005, 54(6): 2562-2567. doi: 10.7498/aps.54.2562
计量
  • 文章访问数:  3550
  • PDF下载量:  693
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-17
  • 修回日期:  2012-09-20
  • 刊出日期:  2013-02-05

耦合分数阶布朗马达在非对称势中的输运

  • 1. 四川大学数学学院, 成都 610064;
  • 2. 电子信息控制重点实验室, 成都 610036
    基金项目: 国家自然科学基金(批准号:11171238)资助的课题.

摘要: 讨论了分数阶Frenkel-Kontorova模型的物理意义, 并应用该模型刻画了耦合粒子链在记忆性介质中的输运现象, 研究了各参数对粒子链运动状态的影响. 数值仿真结果表明: 系统的记忆性对粒子链的运动有显著影响, 尤其出现了在非记忆性情况下所不具有的反向流. 同时发现粒子链的平均流速会随耦合强度、分数阶的阶数变化而产生广义共振; 此外, 平均流速还会随噪声强度的变化出现广义随机共振现象.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回