搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强度相关耦合双Jaynes-Cummings模型中的纠缠和量子失谐

胡要花 谭勇刚 刘强

引用本文:
Citation:

强度相关耦合双Jaynes-Cummings模型中的纠缠和量子失谐

胡要花, 谭勇刚, 刘强

Entanglement and quantum discord in a double J-C model with intensity-dependent coupling

Hu Yao-Hua, Tan Yong-Gang, Liu Qiang
PDF
导出引用
  • 研究强度相关耦合双Jaynes-Cummings模型中, 两运动原子初始处于最大纠缠态、光场初始处于单模热态时, 强度相关耦合、热光场平均光子数以及原子运动对两原子的纠缠和量子失谐的影响. 结果表明: 考虑强度相关耦合时, 纠缠和量子失谐均出现周期性地消失和回复现象, 并且, 回复以后的纠缠和量子失谐能达到初始值. 腔场温度的升高会加速纠缠和量子失谐的消失. 此外, 原子运动的场模结构参数对该模型中的纠缠和量子失谐影响很大, 其值选择合适时, 两个原子能够自始至终地保持纠缠或量子失谐状态.
    Considering a double J-C model with intensity-dependent coupling, we have studied the effects of the intensity-dependent coupling, the mean photon numbers and the atomic motion, on the entanglement and quantum discord between the two two-level atoms when the moving atoms are initially in a maximally entangled state and the fields are in the single-mode thermal fields. The results show that, the entanglement and quantum discord disappear and revive periodically, and can have up to their starting values after revival. A rise in cavity temperature accelerates the death of the entanglement and quantum discord. In addition, the field-mode structural parameter has a strong effect on the entanglement and quantum discord in the system. When the field-mode structural parameter takes a suitable value, the entanglement and quantum discord of the two atoms can be kept from start to finish.
    • 基金项目: 国家自然科学基金(批准号: 10905028)、NSFC-河南人才培养联合基金(批准号: U1204616)和河南省基础与前沿技术研究计划(批准号: 102300410050)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 10905028), the NSFC-Henan Talent Development Joint Fund (Grant No. U1204616), and the Program for the Fundamental and Frontier Technology Research of Henan Province, China (Grant No. 102300410050)
    [1]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge University Press: Cambridge)

    [2]

    Briegel H J, Drr W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [3]

    Rosenfeld W, Hocke F, Henkel F, Krug M, Volz J, Weber M, Weinfurter H 2008 Phys. Rev. Lett. 101 260403

    [4]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [5]

    Yönac M, Eberly J H 2008 Opt. Lett. 33 270

    [6]

    Lettner M, Mcke M, Riedl S, Vo C, Hahn C, Baur S, Bochmann J, Ritter S, Drr S, Rempe G 2011 Phys. Rev. Lett. 106 210503

    [7]

    Yönac M, Eberly J H 2010 Phys. Rev. A 82 022321

    [8]

    Man Z X, Xia Y J, An N B 2012 Phys. Rev. A 86 012325

    [9]

    Lu D M 2012 Acta Phys. Sin. 61 180301 (in Chinese) [卢道明 2012 物理学报 61 180301]

    [10]

    Jaynes E T, Cummings F W 1963 Proc IEEE 51 89

    [11]

    Buck B, Sukumar C V 1981 Phys. Lett. A 81 132

    [12]

    Barzanjeh Sh, Naderi M H, Soltanolkotabi M 2011 Phys. Rev. A 84 063850

    [13]

    Liu X J, Zhou B J, Liu Y M, Jiang C L 2012 Acta Phys. Sin. 61 230301 (in Chinese) [刘小娟, 周并举, 刘一曼, 姜春蕾 2012 物理学报 61 230301]

    [14]

    El-Orany Faisal A A 2006 J. Mod. Opt. 53 1699

    [15]

    Xiong H N, Guo H 2007 Chin. Phys. Lett. 24 1805

    [16]

    Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502

    [17]

    Knill E, Laflamme R 1998 Phys. Rev. Lett. 81 5672

    [18]

    Bihama E, Brassardb G, Kenigsberga D, Mor T 2004 Theor. Comput. Sci. 320 15

    [19]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [20]

    Lanyon B P, Barbieri M, Almeida M P, White A G 2008 Phys. Rev. Lett. 101 200501

    [21]

    Datta A, Shaji A, Caves Carlton M 2008 Phys. Rev. Lett. 100 050502

    [22]

    Cui J, Fan H 2010 J. Phys. A: Math. Theor. 43 045305

    [23]

    Allegra M, Giorda P, Montorsi A 2011 Phys. Rev. B 84 245133

    [24]

    Xu J W, Chen Q H 2012 Chin. Phys. B 21 040302

    [25]

    Man Z X, Xia Y J, An N B 2011 J. Phys. B 44 095504

    [26]

    Blandino R, Genoni M G, Etesse J, Barbieri M, Paris M G A, Grangier P, Tualle-Brouri R 2012 Phys. Rev. Lett. 109 180402

    [27]

    Schlicher R R 1989 Opt. Commum. 70 97

    [28]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [29]

    Hill S 1997 Phys. Rev. Lett. 78 5022

    [30]

    Vedral V 2002 Rev. Mod. Phys. 74 197

    [31]

    Henderson L, Vedral V 2001 J. Phys. A 34 6899

  • [1]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge University Press: Cambridge)

    [2]

    Briegel H J, Drr W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932

    [3]

    Rosenfeld W, Hocke F, Henkel F, Krug M, Volz J, Weber M, Weinfurter H 2008 Phys. Rev. Lett. 101 260403

    [4]

    Yu T, Eberly J H 2004 Phys. Rev. Lett. 93 140404

    [5]

    Yönac M, Eberly J H 2008 Opt. Lett. 33 270

    [6]

    Lettner M, Mcke M, Riedl S, Vo C, Hahn C, Baur S, Bochmann J, Ritter S, Drr S, Rempe G 2011 Phys. Rev. Lett. 106 210503

    [7]

    Yönac M, Eberly J H 2010 Phys. Rev. A 82 022321

    [8]

    Man Z X, Xia Y J, An N B 2012 Phys. Rev. A 86 012325

    [9]

    Lu D M 2012 Acta Phys. Sin. 61 180301 (in Chinese) [卢道明 2012 物理学报 61 180301]

    [10]

    Jaynes E T, Cummings F W 1963 Proc IEEE 51 89

    [11]

    Buck B, Sukumar C V 1981 Phys. Lett. A 81 132

    [12]

    Barzanjeh Sh, Naderi M H, Soltanolkotabi M 2011 Phys. Rev. A 84 063850

    [13]

    Liu X J, Zhou B J, Liu Y M, Jiang C L 2012 Acta Phys. Sin. 61 230301 (in Chinese) [刘小娟, 周并举, 刘一曼, 姜春蕾 2012 物理学报 61 230301]

    [14]

    El-Orany Faisal A A 2006 J. Mod. Opt. 53 1699

    [15]

    Xiong H N, Guo H 2007 Chin. Phys. Lett. 24 1805

    [16]

    Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502

    [17]

    Knill E, Laflamme R 1998 Phys. Rev. Lett. 81 5672

    [18]

    Bihama E, Brassardb G, Kenigsberga D, Mor T 2004 Theor. Comput. Sci. 320 15

    [19]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [20]

    Lanyon B P, Barbieri M, Almeida M P, White A G 2008 Phys. Rev. Lett. 101 200501

    [21]

    Datta A, Shaji A, Caves Carlton M 2008 Phys. Rev. Lett. 100 050502

    [22]

    Cui J, Fan H 2010 J. Phys. A: Math. Theor. 43 045305

    [23]

    Allegra M, Giorda P, Montorsi A 2011 Phys. Rev. B 84 245133

    [24]

    Xu J W, Chen Q H 2012 Chin. Phys. B 21 040302

    [25]

    Man Z X, Xia Y J, An N B 2011 J. Phys. B 44 095504

    [26]

    Blandino R, Genoni M G, Etesse J, Barbieri M, Paris M G A, Grangier P, Tualle-Brouri R 2012 Phys. Rev. Lett. 109 180402

    [27]

    Schlicher R R 1989 Opt. Commum. 70 97

    [28]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [29]

    Hill S 1997 Phys. Rev. Lett. 78 5022

    [30]

    Vedral V 2002 Rev. Mod. Phys. 74 197

    [31]

    Henderson L, Vedral V 2001 J. Phys. A 34 6899

  • [1] 张晓东, 於亚飞, 张智明. 量子弱测量中纠缠对参数估计精度的影响. 物理学报, 2021, 70(24): 240302. doi: 10.7498/aps.70.20210796
    [2] 陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛. 基于纠缠态的量子通信网络的量子信道建立速率模型. 物理学报, 2015, 64(4): 040301. doi: 10.7498/aps.64.040301
    [3] 李浩珍, 谢双媛, 许静平, 羊亚平. 结构库中二能级原子与自发辐射场间的纠缠演化. 物理学报, 2014, 63(12): 124201. doi: 10.7498/aps.63.124201
    [4] 刘世右, 郑凯敏, 贾芳, 胡利云, 谢芳森. 单-双模组合压缩热态的纠缠性质及在量子隐形传态中的应用. 物理学报, 2014, 63(14): 140302. doi: 10.7498/aps.63.140302
    [5] 谢美秋, 郭斌. 不同磁场环境下Heisenberg XXZ自旋链中的热量子失协. 物理学报, 2013, 62(11): 110303. doi: 10.7498/aps.62.110303
    [6] 贺志, 李龙武. 两二能级原子在共同环境下的量子关联动力学. 物理学报, 2013, 62(18): 180301. doi: 10.7498/aps.62.180301
    [7] 徐健, 陈小余, 李海涛. 多进制量子图态纠缠的确定 . 物理学报, 2012, 61(22): 220304. doi: 10.7498/aps.61.220304
    [8] 胡要花. Stark位移对热环境下双Jaynes-Cummings模型中原子纠缠的影响. 物理学报, 2012, 61(16): 160304. doi: 10.7498/aps.61.160304
    [9] 王继成, 廖庆洪, 王月媛, 王跃科, 刘树田. k光子Jaynes-Cummings模型与运动原子相互作用中的熵交换及纠缠. 物理学报, 2011, 60(11): 114208. doi: 10.7498/aps.60.114208
    [10] 谢双媛, 胡翔. 各向异性光子晶体中二能级原子和自发辐射场间的纠缠. 物理学报, 2010, 59(9): 6172-6177. doi: 10.7498/aps.59.6172
    [11] 秦猛. 多量子位Heisenberg XX链中的杂质纠缠. 物理学报, 2010, 59(4): 2212-2216. doi: 10.7498/aps.59.2212
    [12] 王海霞, 殷雯, 王芳卫. 耦合量子点中的纠缠测量. 物理学报, 2010, 59(8): 5241-5245. doi: 10.7498/aps.59.5241
    [13] 王彦辉, 夏云杰. 具有Dzyaloshinskii-Moriya相互作用的三量子比特海森伯模型中的对纠缠. 物理学报, 2009, 58(11): 7479-7485. doi: 10.7498/aps.58.7479
    [14] 单传家, 程维文, 刘堂昆, 黄燕霞, 李 宏. 具有Dzyaloshinskii-Moriya相互作用的一维随机量子XY模型中的纠缠特性. 物理学报, 2008, 57(5): 2687-2694. doi: 10.7498/aps.57.2687
    [15] 成秋丽, 谢双媛, 羊亚平. 频率变化的光场对双光子过程中量子纠缠的调控. 物理学报, 2008, 57(11): 6968-6975. doi: 10.7498/aps.57.6968
    [16] 周南润, 曾贵华, 龚黎华, 刘三秋. 基于纠缠的数据链路层量子通信协议. 物理学报, 2007, 56(9): 5066-5070. doi: 10.7498/aps.56.5066
    [17] 李照鑫, 邹 健, 蔡金芳, 邵 彬. 电荷量子比特与量子化光场之间的纠缠. 物理学报, 2006, 55(4): 1580-1584. doi: 10.7498/aps.55.1580
    [18] 黄永畅, 刘 敏. 一般WGHZ态和它的退纠缠与概率隐形传态. 物理学报, 2005, 54(10): 4517-4523. doi: 10.7498/aps.54.4517
    [19] 谭华堂, 甘仲惟, 李高翔. 与压缩真空库耦合的单模腔内三量子点中激子纠缠. 物理学报, 2005, 54(3): 1178-1183. doi: 10.7498/aps.54.1178
    [20] 石名俊, 杜江峰, 朱栋培, 阮图南. 混合纠缠态的几何描述. 物理学报, 2000, 49(10): 1912-1918. doi: 10.7498/aps.49.1912
计量
  • 文章访问数:  3922
  • PDF下载量:  528
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-08
  • 修回日期:  2012-11-30
  • 刊出日期:  2013-04-05

强度相关耦合双Jaynes-Cummings模型中的纠缠和量子失谐

  • 1. 洛阳师范学院物理与电子信息学院, 洛阳 471022
    基金项目: 国家自然科学基金(批准号: 10905028)、NSFC-河南人才培养联合基金(批准号: U1204616)和河南省基础与前沿技术研究计划(批准号: 102300410050)资助的课题.

摘要: 研究强度相关耦合双Jaynes-Cummings模型中, 两运动原子初始处于最大纠缠态、光场初始处于单模热态时, 强度相关耦合、热光场平均光子数以及原子运动对两原子的纠缠和量子失谐的影响. 结果表明: 考虑强度相关耦合时, 纠缠和量子失谐均出现周期性地消失和回复现象, 并且, 回复以后的纠缠和量子失谐能达到初始值. 腔场温度的升高会加速纠缠和量子失谐的消失. 此外, 原子运动的场模结构参数对该模型中的纠缠和量子失谐影响很大, 其值选择合适时, 两个原子能够自始至终地保持纠缠或量子失谐状态.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回