搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种利用海豚叫声的仿生水声通信方法

刘凇佐 乔钢 尹艳玲

引用本文:
Citation:

一种利用海豚叫声的仿生水声通信方法

刘凇佐, 乔钢, 尹艳玲

Bionic underwater acoustic communication using dolphin sounds

Liu Song-Zuo, Qiao Gang, Yin Yan-Ling
PDF
导出引用
  • 针对水下通信隐蔽性的需求, 克服传统固定载波调制方式带来的声源暴露问题, 提出一种基于海豚叫声的仿生伪装水声通信方法, 使通信信号被当作海洋生物噪声排除, 达到隐蔽通信的效果. 研究了海豚叫声信号特点, 利用海豚哨声信号实现同步与识别, 采用差分脉冲位置调制方法, 信息调制在相邻海豚嘀嗒声信号的时间间隔, 采用压缩传感体制下的匹配追踪技术估计信道, 虚拟时反技术实现信道均衡. 湖试结果验证了该方法的有效性和可行性, 接收声信号与发射信号声音上具有很高的相似度, 可以达到伪装隐蔽的效果. 实验中水平距离2 km, 通信速率不小于29 bps时,误码率可以达到10-4以下.
    An underwater acoustic communication scheme using intrinsic dolphin sounds is proposed to overcome the sound exposure derived from traditional fixed carrier modulation for covert communication in this paper. The communication signal can be detected but it could easily be excluded in the process of recognition/classification by an adversary. This is because the signal resembles dolphin sounds. Properties of dolphin sounds are investigated in this paper. Synchronization in this scheme is achieved by using dolphin whistles while dolphin clicks are used as information carrier. The time interval between dolphin clicks conveys information. Channel equalization is performed by passive time reversal mirror technique, whereas channel estimation is done through matching pursuit method under the theory of compressive sensing. The efficiency and feasibility of the proposed method are verified by lake trial. The received signal and emission mimic bio-signal are very similar. Bit error rate less than 10-4 is achieved above 29 bps to a distance of about 2 km.
    • 基金项目: 国家高技术研究发展计划重点项目(批准号: 2009AA093601-2)和 国家自然科学基金(批准号: 11274079)资助的课题.
    • Funds: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA093601-2) and the National Natural Science Foundation of China (Grant No. 11274079).
    [1]

    Sozer E M, Stojanovic M, Proakis J G 2000 IEEE J. Oceanic Eng. 25 72

    [2]
    [3]

    van Walree P A, Leus G 2009 IEEE J. Oceanic Eng. 34 645

    [4]
    [5]

    van Walree P A, Sangfelt E, Leus G 2008 Oceans 2008 Quebec City, Canada, September 15-18 2008 p264

    [6]
    [7]

    Ling J, He H, Li J A, Roberts W, Stoica P 2010 J. Acoust. Soc. Am. 128 2898

    [8]

    Leus G, van Walree P A 2008 IEEE J. Sel. Area Commun. 26 1662

    [9]
    [10]
    [11]

    Leus G, van Walree P, Boschma J, Fanciullacci C, Gerritsen H, Tusoni P, 2008 Oceans 2008 Quebec City, Canada, September 15-18 2008 p391

    [12]
    [13]

    Clausen K T, Wahlberg M, Beedholm K, Deruiter S, Madsen P T 2010 Bioacoustics Inter. J.A.S. Rec. 20 1

    [14]

    Yin J W, Hui J Y, Wang Y L, Hui J 2007 Acta Phys. Sin. 56 (in Chinese) [殷敬伟, 惠俊英, 王逸林, 惠娟 2007 物理学报 56 56]

    [15]
    [16]
    [17]

    Stojanovic M, Catipovic J A, Proakis J G 1994 IEEE J. Oceanic Eng. 19 100

    [18]
    [19]

    Donoho D L 2006 IEEE Trans. Inf. Theory 52 1289

    [20]

    Candes E J, Romberg J, Tao T 2006 IEEE Trans. Inf. Theory 52 489

    [21]
    [22]
    [23]

    Cotter S F, Rao B D 2002 IEEE Trans. Commun. 50 374

    [24]
    [25]

    Yin J W, Wang Y L, Wang L, Hui J Y 2009 Chin. Sci. Bull. 54 1302

    [26]
    [27]

    Lammers M O, Au W W L, Herzing D L 2003 J. Acoust. Soc. Am. 114 1629

    [28]
    [29]

    Sims P Q, Vaughn R, Hung S K, Wuersia B 2012 J. Acoust. Soc. Am. 131 EL48

    [30]
    [31]

    Yin J W, Zhang X, Sheng X L, Sun C 2012 Acta Commun. 6 121 (in Chinese) [殷敬伟, 张晓, 生雪莉, 孙超 2012 通信学报 6 121]

    [32]

    Siderius M, Porter M B 2008 J. Acoust. Soc. Am. 124 137

    [33]
    [34]
  • [1]

    Sozer E M, Stojanovic M, Proakis J G 2000 IEEE J. Oceanic Eng. 25 72

    [2]
    [3]

    van Walree P A, Leus G 2009 IEEE J. Oceanic Eng. 34 645

    [4]
    [5]

    van Walree P A, Sangfelt E, Leus G 2008 Oceans 2008 Quebec City, Canada, September 15-18 2008 p264

    [6]
    [7]

    Ling J, He H, Li J A, Roberts W, Stoica P 2010 J. Acoust. Soc. Am. 128 2898

    [8]

    Leus G, van Walree P A 2008 IEEE J. Sel. Area Commun. 26 1662

    [9]
    [10]
    [11]

    Leus G, van Walree P, Boschma J, Fanciullacci C, Gerritsen H, Tusoni P, 2008 Oceans 2008 Quebec City, Canada, September 15-18 2008 p391

    [12]
    [13]

    Clausen K T, Wahlberg M, Beedholm K, Deruiter S, Madsen P T 2010 Bioacoustics Inter. J.A.S. Rec. 20 1

    [14]

    Yin J W, Hui J Y, Wang Y L, Hui J 2007 Acta Phys. Sin. 56 (in Chinese) [殷敬伟, 惠俊英, 王逸林, 惠娟 2007 物理学报 56 56]

    [15]
    [16]
    [17]

    Stojanovic M, Catipovic J A, Proakis J G 1994 IEEE J. Oceanic Eng. 19 100

    [18]
    [19]

    Donoho D L 2006 IEEE Trans. Inf. Theory 52 1289

    [20]

    Candes E J, Romberg J, Tao T 2006 IEEE Trans. Inf. Theory 52 489

    [21]
    [22]
    [23]

    Cotter S F, Rao B D 2002 IEEE Trans. Commun. 50 374

    [24]
    [25]

    Yin J W, Wang Y L, Wang L, Hui J Y 2009 Chin. Sci. Bull. 54 1302

    [26]
    [27]

    Lammers M O, Au W W L, Herzing D L 2003 J. Acoust. Soc. Am. 114 1629

    [28]
    [29]

    Sims P Q, Vaughn R, Hung S K, Wuersia B 2012 J. Acoust. Soc. Am. 131 EL48

    [30]
    [31]

    Yin J W, Zhang X, Sheng X L, Sun C 2012 Acta Commun. 6 121 (in Chinese) [殷敬伟, 张晓, 生雪莉, 孙超 2012 通信学报 6 121]

    [32]

    Siderius M, Porter M B 2008 J. Acoust. Soc. Am. 124 137

    [33]
    [34]
  • [1] 阳润恒, 安顺, 尚文, 邓涛. 仿生辐射制冷的研究进展. 物理学报, 2022, 71(2): 024401. doi: 10.7498/aps.71.20211854
    [2] 张闯, 宋忠长, 张宇. 中华白海豚声接收通道. 物理学报, 2020, 69(23): 234302. doi: 10.7498/aps.69.20200958
    [3] 殷敬伟, 杜鹏宇, 张晓, 朱广平. 基于单矢量差分能量检测器的扩频水声通信. 物理学报, 2016, 65(4): 044302. doi: 10.7498/aps.65.044302
    [4] 杜鹏宇, 殷敬伟, 周焕玲, 郭龙祥. 基于时反镜能量检测法的循环移位扩频水声通信. 物理学报, 2016, 65(1): 014302. doi: 10.7498/aps.65.014302
    [5] 王鹏伟, 刘明杰, 江雷. 仿生多尺度超浸润界面材料. 物理学报, 2016, 65(18): 186801. doi: 10.7498/aps.65.186801
    [6] 闵伶俐, 陈松月, 盛智芝, 王宏龙, 吴锋, 王苗, 侯旭. 仿生微流控的发展与应用. 物理学报, 2016, 65(17): 178301. doi: 10.7498/aps.65.178301
    [7] 张歆, 邢晓飞, 张小蓟, 周燕群, 赵顺德, 李俊威. 基于水声信道传播时延排序的分层空时信号检测. 物理学报, 2015, 64(16): 164302. doi: 10.7498/aps.64.164302
    [8] 马璐, 刘凇佐, 乔钢. 水声正交频分多址上行通信稀疏信道估计与导频优化. 物理学报, 2015, 64(15): 154304. doi: 10.7498/aps.64.154304
    [9] 张歆, 张小蓟, 邢晓飞, 姜丽伟. 单载波频域均衡中的水声信道频域响应与噪声估计. 物理学报, 2014, 63(19): 194304. doi: 10.7498/aps.63.194304
    [10] 王奔, 念敬妍, 铁璐, 张亚斌, 郭志光. 稳定超疏水性表面的理论进展. 物理学报, 2013, 62(14): 146801. doi: 10.7498/aps.62.146801
    [11] 韩笑, 殷敬伟, 郭龙祥, 张晓. 基于差分Pattern时延差编码和海豚whistles信号的仿生水声通信技术研究. 物理学报, 2013, 62(22): 224301. doi: 10.7498/aps.62.224301
    [12] 王巍, 乔钢, 邢思宇. 无边带信息的多输入多输出正交频分复用水声通信图样选择峰均比抑制算法. 物理学报, 2013, 62(18): 184301. doi: 10.7498/aps.62.184301
    [13] 何成兵, 黄建国, 孟庆微, 张群飞, 史文涛. 基于扩频码的单载波迭代频域均衡水声通信. 物理学报, 2013, 62(23): 234301. doi: 10.7498/aps.62.234301
    [14] 于洋, 周锋, 乔钢. 正交码元移位键控扩频水声通信. 物理学报, 2013, 62(6): 064302. doi: 10.7498/aps.62.064302
    [15] 殷敬伟, 杨森, 杜鹏宇, 余赟, 陈阳. 基于单矢量有源平均声强器的码分多址水声通信. 物理学报, 2012, 61(6): 064302. doi: 10.7498/aps.61.064302
    [16] 于洋, 周锋, 乔钢. M元码元移位键控扩频水声通信. 物理学报, 2012, 61(23): 234301. doi: 10.7498/aps.61.234301
    [17] 何成兵, 黄建国, 韩晶, 张群飞. 循环移位扩频水声通信. 物理学报, 2009, 58(12): 8379-8385. doi: 10.7498/aps.58.8379
    [18] 殷敬伟, 惠俊英, 郭龙祥. 点对点移动水声通信技术研究. 物理学报, 2008, 57(3): 1753-1758. doi: 10.7498/aps.57.1753
    [19] 殷敬伟, 惠俊英, 王逸林, 惠 娟. M元混沌扩频多通道Pattern时延差编码水声通信. 物理学报, 2007, 56(10): 5915-5921. doi: 10.7498/aps.56.5915
    [20] 张 宏, 方路平, 童勤业. 海豚等动物神经系统处理多普勒信号的一种可能性方案. 物理学报, 2007, 56(12): 7339-7345. doi: 10.7498/aps.56.7339
计量
  • 文章访问数:  4702
  • PDF下载量:  832
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-12-02
  • 修回日期:  2013-02-04
  • 刊出日期:  2013-07-05

一种利用海豚叫声的仿生水声通信方法

  • 1. 哈尔滨工程大学, 水声技术重点实验室, 哈尔滨 150001
    基金项目: 国家高技术研究发展计划重点项目(批准号: 2009AA093601-2)和 国家自然科学基金(批准号: 11274079)资助的课题.

摘要: 针对水下通信隐蔽性的需求, 克服传统固定载波调制方式带来的声源暴露问题, 提出一种基于海豚叫声的仿生伪装水声通信方法, 使通信信号被当作海洋生物噪声排除, 达到隐蔽通信的效果. 研究了海豚叫声信号特点, 利用海豚哨声信号实现同步与识别, 采用差分脉冲位置调制方法, 信息调制在相邻海豚嘀嗒声信号的时间间隔, 采用压缩传感体制下的匹配追踪技术估计信道, 虚拟时反技术实现信道均衡. 湖试结果验证了该方法的有效性和可行性, 接收声信号与发射信号声音上具有很高的相似度, 可以达到伪装隐蔽的效果. 实验中水平距离2 km, 通信速率不小于29 bps时,误码率可以达到10-4以下.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回