搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光子晶体光纤超连续谱产生过程中色散波的孤子俘获研究

王威彬 杨华 唐平华 韩芳

引用本文:
Citation:

光子晶体光纤超连续谱产生过程中色散波的孤子俘获研究

王威彬, 杨华, 唐平华, 韩芳

Soliton trapping of dispersive waves during supercontinuum generation in photonic crystal fiber

Wang Wei-Bin, Yang Hua, Tang Ping-Hua, Han Fang
PDF
导出引用
  • 基于光子晶体光纤中脉冲演化遵循的非线性薛定谔方程, 用数值模拟的方法分别研究了飞秒脉冲在单零色散点和双零色散点光子晶体光纤中超连续谱的产生和色散波的孤子俘获现象. 结果表明: 与单零色散点光子晶体光纤相比, 双零色散点光子晶体光纤产生的超连续谱既包含了蓝移色散波, 又包含了红移色散波, 且当满足群速度匹配时, 孤子通过四波混频不仅能俘获蓝移色散波, 而且能俘获红移色散波, 从而产生新的俘获波频谱成分. 为了清楚地观察脉冲传输的时频特性, 通过模拟交叉相关频率分辨光学开关技术, 得到了孤子俘获色散波的演化过程.
    Using the generalized nonlinear Schrödinger equation, we present a numerical study of trapping of dispersive waves by solitons during femtosecond pumped supercontinuum generation in photonic crystal fiber with single or double zero dispersive wavelength. Numerical simulation results show that the generated supercontinuum in photonic crystal fiber with two zero dispersive wavelengths includes both blue-shifted dispersive wave (B-DW) and red-shifted dispersive wave (R-DW) while the generated supercontinuum in photonic crystal fiber with single zero dispersive wavelength has only blue-shifted dispersive wave. We find a novel phenomenon that not only B-DW but also R-DW can be trapped by solitions via four-wave mixing when the group-velocity matching between the soliton and the dispersive wave is satisfied, thus leading to the generation of new spectral components. In order to clearly display the evolution of soliton trapping of dispersive waves, the spectrogram of output pulses is observed using cross-correlation frequency-resolved optical gating technique.
    • 基金项目: 国家自然科学基金(批准号:61275137)和教育部新世纪优秀人才支持计划(批准号:NCET-12-0166)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61275137), and the New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-0166).
    [1]

    Russell P J 2003 Science 299 358

    [2]

    Knight J C 2003 Nature 424 847

    [3]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135

    [4]

    Husakou A V, Herrmann J 2001 Phys. Rev. Lett. 87 203901

    [5]

    Cheng C F, Wang X F, Lu B 2004 Acta Phys. Sin. 53 1826 (in Chinese) [成纯福, 王晓方, 鲁波 2004 物理学报 53 1826]

    [6]

    Chang G Q, Chen L J, Kärtne F X 2010 Opt. Lett. 35 2361

    [7]

    Liu W H, Song X Z, Wang Y S, Liu H J, Zhao W, Liu X M, Peng Q J, Xu Z Y 2008 Acta Phys. Sin. 57 917 (in Chinese) [刘卫华, 宋啸中, 王屹山, 刘红军, 赵卫, 刘雪明, 彭钦军, 许祖彦 2008 物理学报 57 917]

    [8]

    Nishizawa N, Goto T 2002 Opt. Lett. 27 152

    [9]

    Nishizawa N, Goto T 2003 Opt. Express. 11 359

    [10]

    Genty G, Lehtonen M, Ludvigsen H 2004 Opt. Express 12 4614

    [11]

    Skryabin D V, Yulin A V 2005 Phys. Rev. E 72 016619

    [12]

    Gorbach A V, Skryabin D V 2007 Nat. Photon. 1 653

    [13]

    Gorbach A V, Skryabin D V 2007 Opt. Express 15 14560

    [14]

    Gorbach A V, Skryabin D V 2007 Phys. Rev. A 76 053803

    [15]

    Travers J C, Taylor J R 2009 Opt. Lett. 34 115

    [16]

    Kudlinski A, Bouwmans G, Douay M, Taki M, Mussot A 2009 J. Lightwave Technol. 27 1556

    [17]

    Hill S, Kuklewicz C E, Leonhardt U, König F 2009 Opt. Express 17 13588

    [18]

    Judge A C, Bang O, Sterke C 2010 J. Opt. Soc. Am. B 27 2195

    [19]

    Skryabin D V, Gorbach A V 2010 Rev. Mod. Phys. 82 1287

    [20]

    Driben R, Mitschke F, Zhavoronkov N 2010 Opt. Express 18 25993

    [21]

    Travers J C 2010 J. Opt. 12 113001

    [22]

    Tartara L, Cristiani I, Degiorgio V 2003 Appl. Phys. B 77 307

    [23]

    Austin D R, Sterke C, Eggleton B, Brown T G 2006 Opt. Express 14 11997

    [24]

    Travers J C, Rulkov A B, Cumberland B A, Popov S V, Taylor J R 2008 Opt. Express 16 14435

    [25]

    Travers J C 2009 Opt. Express 17 1502

    [26]

    Liu C, Rees E J, Laurila T, Jian S, Kaminski C F 2012 Opt. Express 20 6315

    [27]

    Li J F, Zhou G Y, Hou L T 2012 Acta Phys. Sin. 61 124203 (in Chinese) [李建锋, 周桂耀, 侯蓝田 2012 物理学报 61 124203]

    [28]

    Fang L, Zhao J L, Gan X T, Li P, Zhang X J 2010 Acta Photon. Sin. 39 1921 (in Chinese) [方亮, 赵建林, 甘雪涛, 李鹏, 赵晓娟 2010 光子学报 39 1921]

    [29]

    Zhao X T, Zheng Y, Han Y, Zhou G Y, Hou Z Y, Shen J P, Wang C, Hou L T 2013 Acta Phys. Sin. 62 064215 (in Chinese) [赵兴涛, 郑义, 韩颖, 周桂耀, 侯峙云, 沈建平, 王春, 侯蓝田 2013 物理学报 62 064215]

    [30]

    Hilligsoe K M, Andersen T V, Paulsen H N, Nielsen C K, Molmer K, Keiding S, Kristiansen R, Hansen K P, Larsen J J 2004 Opt. Express 12 1045

    [31]

    Frosz M H, Falk P, Bang O 2005 Opt. Express 13 6181

    [32]

    Genty G, Lehtonen M, Ludvigsen H, Kaivola M 2004 Opt. Express 12 3471

    [33]

    Mussot A, Beaugeois M, Bouazaoui M, Sylvestre T 2007 Opt. Express 15 11553

    [34]

    Skryabin D V, Luan F, Knight J C, Russell P St J 2003 Science 301 1705

    [35]

    Biancalana F, Skryabin D V, Yulin A V 2004 Phys. Rev. E 70 016615

    [36]

    Andersen T V, Hilligsoe K M, Nielsen C K, Thogersen J, Hansen K P, Keiding S R, Larsen J J 2004 Opt. Express 12 4113

    [37]

    Falk P, Frosz M, Bang O 2005 Opt. Express 13 7535

    [38]

    Wang W B, Yang H, Tang P H, Zhao C J, Gao J 2013 Opt. Express 21 11215

    [39]

    Sinkin O V, Holzlöhner R, Zweck J, Menyuk C R 2003 J. Lightwave Technol. 21 61

    [40]

    Liu X M, Lee B 2003 IEEE Photon. Technol. Lett. 15 1549

    [41]

    Lu H, Liu X M, Gong Y K, Hu X H, Li X H 2010 J. Opt. Soc. Am. B 27 904

    [42]

    Dudley J, Gu X, Xu L, Kimmel M, Zeek E, O’Shea P, Trebino R, Coen S, Windeler R 2002 Opt. Express 10 1215

    [43]

    Liu X M, Zhou X Q, Lu C 2005 Phys. Rev. A 72 013811

    [44]

    Liu X M 2008 Phys. Rev. A 77 043818

  • [1]

    Russell P J 2003 Science 299 358

    [2]

    Knight J C 2003 Nature 424 847

    [3]

    Dudley J M, Genty G, Coen S 2006 Rev. Mod. Phys. 78 1135

    [4]

    Husakou A V, Herrmann J 2001 Phys. Rev. Lett. 87 203901

    [5]

    Cheng C F, Wang X F, Lu B 2004 Acta Phys. Sin. 53 1826 (in Chinese) [成纯福, 王晓方, 鲁波 2004 物理学报 53 1826]

    [6]

    Chang G Q, Chen L J, Kärtne F X 2010 Opt. Lett. 35 2361

    [7]

    Liu W H, Song X Z, Wang Y S, Liu H J, Zhao W, Liu X M, Peng Q J, Xu Z Y 2008 Acta Phys. Sin. 57 917 (in Chinese) [刘卫华, 宋啸中, 王屹山, 刘红军, 赵卫, 刘雪明, 彭钦军, 许祖彦 2008 物理学报 57 917]

    [8]

    Nishizawa N, Goto T 2002 Opt. Lett. 27 152

    [9]

    Nishizawa N, Goto T 2003 Opt. Express. 11 359

    [10]

    Genty G, Lehtonen M, Ludvigsen H 2004 Opt. Express 12 4614

    [11]

    Skryabin D V, Yulin A V 2005 Phys. Rev. E 72 016619

    [12]

    Gorbach A V, Skryabin D V 2007 Nat. Photon. 1 653

    [13]

    Gorbach A V, Skryabin D V 2007 Opt. Express 15 14560

    [14]

    Gorbach A V, Skryabin D V 2007 Phys. Rev. A 76 053803

    [15]

    Travers J C, Taylor J R 2009 Opt. Lett. 34 115

    [16]

    Kudlinski A, Bouwmans G, Douay M, Taki M, Mussot A 2009 J. Lightwave Technol. 27 1556

    [17]

    Hill S, Kuklewicz C E, Leonhardt U, König F 2009 Opt. Express 17 13588

    [18]

    Judge A C, Bang O, Sterke C 2010 J. Opt. Soc. Am. B 27 2195

    [19]

    Skryabin D V, Gorbach A V 2010 Rev. Mod. Phys. 82 1287

    [20]

    Driben R, Mitschke F, Zhavoronkov N 2010 Opt. Express 18 25993

    [21]

    Travers J C 2010 J. Opt. 12 113001

    [22]

    Tartara L, Cristiani I, Degiorgio V 2003 Appl. Phys. B 77 307

    [23]

    Austin D R, Sterke C, Eggleton B, Brown T G 2006 Opt. Express 14 11997

    [24]

    Travers J C, Rulkov A B, Cumberland B A, Popov S V, Taylor J R 2008 Opt. Express 16 14435

    [25]

    Travers J C 2009 Opt. Express 17 1502

    [26]

    Liu C, Rees E J, Laurila T, Jian S, Kaminski C F 2012 Opt. Express 20 6315

    [27]

    Li J F, Zhou G Y, Hou L T 2012 Acta Phys. Sin. 61 124203 (in Chinese) [李建锋, 周桂耀, 侯蓝田 2012 物理学报 61 124203]

    [28]

    Fang L, Zhao J L, Gan X T, Li P, Zhang X J 2010 Acta Photon. Sin. 39 1921 (in Chinese) [方亮, 赵建林, 甘雪涛, 李鹏, 赵晓娟 2010 光子学报 39 1921]

    [29]

    Zhao X T, Zheng Y, Han Y, Zhou G Y, Hou Z Y, Shen J P, Wang C, Hou L T 2013 Acta Phys. Sin. 62 064215 (in Chinese) [赵兴涛, 郑义, 韩颖, 周桂耀, 侯峙云, 沈建平, 王春, 侯蓝田 2013 物理学报 62 064215]

    [30]

    Hilligsoe K M, Andersen T V, Paulsen H N, Nielsen C K, Molmer K, Keiding S, Kristiansen R, Hansen K P, Larsen J J 2004 Opt. Express 12 1045

    [31]

    Frosz M H, Falk P, Bang O 2005 Opt. Express 13 6181

    [32]

    Genty G, Lehtonen M, Ludvigsen H, Kaivola M 2004 Opt. Express 12 3471

    [33]

    Mussot A, Beaugeois M, Bouazaoui M, Sylvestre T 2007 Opt. Express 15 11553

    [34]

    Skryabin D V, Luan F, Knight J C, Russell P St J 2003 Science 301 1705

    [35]

    Biancalana F, Skryabin D V, Yulin A V 2004 Phys. Rev. E 70 016615

    [36]

    Andersen T V, Hilligsoe K M, Nielsen C K, Thogersen J, Hansen K P, Keiding S R, Larsen J J 2004 Opt. Express 12 4113

    [37]

    Falk P, Frosz M, Bang O 2005 Opt. Express 13 7535

    [38]

    Wang W B, Yang H, Tang P H, Zhao C J, Gao J 2013 Opt. Express 21 11215

    [39]

    Sinkin O V, Holzlöhner R, Zweck J, Menyuk C R 2003 J. Lightwave Technol. 21 61

    [40]

    Liu X M, Lee B 2003 IEEE Photon. Technol. Lett. 15 1549

    [41]

    Lu H, Liu X M, Gong Y K, Hu X H, Li X H 2010 J. Opt. Soc. Am. B 27 904

    [42]

    Dudley J, Gu X, Xu L, Kimmel M, Zeek E, O’Shea P, Trebino R, Coen S, Windeler R 2002 Opt. Express 10 1215

    [43]

    Liu X M, Zhou X Q, Lu C 2005 Phys. Rev. A 72 013811

    [44]

    Liu X M 2008 Phys. Rev. A 77 043818

  • [1] 熊梦杰, 李进延, 罗兴, 沈翔, 彭景刚, 李海清. 新型高双折射微结构纤芯光子晶体光纤的可调谐超连续谱的特性研究. 物理学报, 2017, 66(9): 094204. doi: 10.7498/aps.66.094204
    [2] 陈其杰, 周桂耀, 石富坤, 李端明, 苑金辉, 夏长明, 葛姝. 微结构光纤近红外色散波产生的研究. 物理学报, 2015, 64(3): 034215. doi: 10.7498/aps.64.034215
    [3] 贾楠, 李唐军, 孙剑, 钟康平, 王目光. 高非线性光纤正常色散区利用皮秒脉冲产生超连续谱的相干特性. 物理学报, 2014, 63(8): 084203. doi: 10.7498/aps.63.084203
    [4] 张心贲, 罗兴, 程兰, 李海清, 彭景刚, 戴能利, 李进延. 双零色散光子晶体光纤中可见光超连续谱的产生. 物理学报, 2014, 63(3): 034204. doi: 10.7498/aps.63.034204
    [5] 祝贤, 张心贲, 陈翔, 彭景刚, 戴能利, 李海清, 李进延. 在色散渐减光子晶体光纤中产生超连续谱的实验研究. 物理学报, 2013, 62(9): 094217. doi: 10.7498/aps.62.094217
    [6] 赵原源, 周桂耀, 李建设, 韩颖, 王超, 王伟. V型高双折射光子晶体光纤超连续谱产生的实验研究. 物理学报, 2013, 62(21): 214212. doi: 10.7498/aps.62.214212
    [7] 赵兴涛, 郑义, 韩颖, 周桂耀, 侯峙云, 沈建平, 王春, 侯蓝田. 光子晶体光纤包层可见光及红外宽带色散波产生. 物理学报, 2013, 62(6): 064215. doi: 10.7498/aps.62.064215
    [8] 刘双龙, 陈丹妮, 刘伟, 牛憨笨. 基于全正色散光子晶体光纤的超连续谱光源. 物理学报, 2013, 62(18): 184210. doi: 10.7498/aps.62.184210
    [9] 李荧, 侯静, 王彦斌, 靳爱军, 姜宗福. 高相干度超连续谱产生的理论研究. 物理学报, 2012, 61(9): 094212. doi: 10.7498/aps.61.094212
    [10] 宋锐, 侯静, 陈胜平, 王彦斌, 陆启生. 177.6 W全光纤超连续谱光源. 物理学报, 2012, 61(5): 054217. doi: 10.7498/aps.61.054217
    [11] 靳爱军, 王泽锋, 侯静, 郭良, 姜宗福. 光子晶体光纤反常色散区抽运产生超连续谱的相干特性分析. 物理学报, 2012, 61(12): 124211. doi: 10.7498/aps.61.124211
    [12] 李建锋, 周桂耀, 侯蓝田. 光子晶体光纤超连续谱的孤子俘获数值研究. 物理学报, 2012, 61(12): 124203. doi: 10.7498/aps.61.124203
    [13] 王彦斌, 熊春乐, 侯静, 陆启生, 彭杨, 陈子伦. 长脉冲抽运光子晶体光纤四波混频和超连续谱的理论研究. 物理学报, 2011, 60(1): 014201. doi: 10.7498/aps.60.014201
    [14] 陈泳竹, 李玉忠, 徐文成. 色散平坦渐减光纤产生平坦超宽超连续谱的特性研究. 物理学报, 2008, 57(12): 7693-7698. doi: 10.7498/aps.57.7693
    [15] 刘卫华, 宋啸中, 王屹山, 刘红军, 赵 卫, 刘雪明, 彭钦军, 许祖彦. 飞秒激光脉冲在高非线性光子晶体光纤中产生超连续谱的实验研究. 物理学报, 2008, 57(2): 917-922. doi: 10.7498/aps.57.917
    [16] 夏 舸, 黄德修, 元秀华. 正常色散平坦光纤中皮秒抽运脉冲超连续谱的形成研究. 物理学报, 2007, 56(4): 2212-2217. doi: 10.7498/aps.56.2212
    [17] 贾亚青, 闫培光, 吕可诚, 张铁群, 朱晓农. 高非线性光子晶体光纤中飞秒脉冲的传输特性和超连续谱产生机制的实验研究及模拟分析. 物理学报, 2006, 55(4): 1809-1814. doi: 10.7498/aps.55.1809
    [18] 陈泳竹, 李玉忠, 屈 圭, 徐文成. 反常色散平坦光纤产生平坦宽带超连续谱的数值研究. 物理学报, 2006, 55(2): 717-722. doi: 10.7498/aps.55.717
    [19] 刘卫华, 王屹山, 刘红军, 段作梁, 赵 卫, 李永放, 彭钦军, 许祖彦. 初始啁啾对飞秒脉冲在光子晶体光纤中超连续谱产生的影响. 物理学报, 2006, 55(4): 1815-1820. doi: 10.7498/aps.55.1815
    [20] 成纯富, 王晓方, 鲁 波. 飞秒光脉冲在光子晶体光纤中的非线性传输和超连续谱产生. 物理学报, 2004, 53(6): 1826-1830. doi: 10.7498/aps.53.1826
计量
  • 文章访问数:  3491
  • PDF下载量:  592
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-04-20
  • 修回日期:  2013-05-05
  • 刊出日期:  2013-09-05

光子晶体光纤超连续谱产生过程中色散波的孤子俘获研究

  • 1. 湖南大学信息科学与工程学院, 微纳光电器件及应用教育部重点实验室, 长沙 410082
    基金项目: 国家自然科学基金(批准号:61275137)和教育部新世纪优秀人才支持计划(批准号:NCET-12-0166)资助的课题.

摘要: 基于光子晶体光纤中脉冲演化遵循的非线性薛定谔方程, 用数值模拟的方法分别研究了飞秒脉冲在单零色散点和双零色散点光子晶体光纤中超连续谱的产生和色散波的孤子俘获现象. 结果表明: 与单零色散点光子晶体光纤相比, 双零色散点光子晶体光纤产生的超连续谱既包含了蓝移色散波, 又包含了红移色散波, 且当满足群速度匹配时, 孤子通过四波混频不仅能俘获蓝移色散波, 而且能俘获红移色散波, 从而产生新的俘获波频谱成分. 为了清楚地观察脉冲传输的时频特性, 通过模拟交叉相关频率分辨光学开关技术, 得到了孤子俘获色散波的演化过程.

English Abstract

参考文献 (44)

目录

    /

    返回文章
    返回