搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟

杨亮 魏承炀 雷力明 李臻熙 李赛毅

引用本文:
Citation:

两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟

杨亮, 魏承炀, 雷力明, 李臻熙, 李赛毅

Monte Carlo simulations of microstructure and texture evolution during annealing of a two-phase titanium alloy

Yang Liang, Wei Cheng-Yang, Lei Li-Ming, Li Zhen-Xi, Li Sai-Yi
PDF
导出引用
  • 蒙特卡罗(MC)方法被广泛应用于模拟金属材料在退火过程中的静态再结晶行为. 在已有两相材料晶粒长大MC模型基础上, 引入形核阶段, 综合考虑再结晶晶粒吞并形变晶粒和再结晶晶粒竞争长大两种情况, 建立了退火时两相合金再结晶MC模型.结合电子背散射衍射所测 初始晶粒形貌、相成分、晶体学取向及应变储能相对值, 该模型被应用于TC11钛合金退火过程中的微观组织及织构演变模拟.结果表明, 所建模型能够较好体现退火过程中两相晶粒的形核及晶粒长大行为. 与β相相比较, α相具有较低的再结晶速率和较高的晶粒长大速率, 前者主要归结于α相较低的初始应变储能, 后者则体现了该条件下初始组织形貌、分布及两相比例对晶粒长大具有重要影响; 由于非均匀形核的影响, 模拟得到的再结晶速率变化与 假设均匀形核的Johnson-Mehl-Avrami-Kolmogorov 再结晶方程存在明显差异.同时, 两相的基本织构特征在退火过程中无明显变化, 但织构强度增加.
    Nucleation and grain growth are important phenomena during static recrystallization of metallic materials and both processes have significant influences on the material properties. The Monte Carlo (MC) method has been widely used to simulate static recrystallization behavior during annealing of metallic materials. In this study, an MC model for static recrystallization of two-phase alloys is proposed by extending an existing MC model, through the introduction of the nucleation stage to account for the grain growth by both consuming deformed grains and competing with other recrystallized grains. The two-phase MC model is used to simulate the evolution of microstructure and texture during annealing of a TC11 (Ti-6.5Al-3.5Mo-1.5Zr-0.3Si) titanium alloy, accounting for initial grain morphology, phase compositions, crystallographic orientations, and relative values of strain stored energy determined by electron back-scattered diffraction. The results show that the model can reproduce satisfactorily the recrystallization and grain growth behavior in annealing. Compared with the β phase, the α phase depicts a lower recrystallization rate but a higher grain growth rate: the former difference can be mainly attributed to the lower strain stored energy in the α phase before annealing, whereas the latter suggests that the grain growth in the system is significantly influenced by the grain morphology, distribution of grains, and relative volume fractions of the two phases in the initial condition. Due to the influence of heterogeneous nucleation accounted for in the model, the simulated recrystallization rate deviates considerably from that described by the Johnson-Mehl-Avrami-Kolmogorov equation. The simulation also indicates that for both phases the textures strengthen with little changes in their basic features during annealing.
    • 基金项目: 国家重点基础研究发展计划(批准号:2007CB613803)和国家自然科学基金(批准号:51271204)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2007CB613803) and the National Natural Science Foundation of China (Grant No. 51271204).
    [1]

    Humphreys F J, Hatherly M 2004 Recrystallization and Related Annealing Phenomena (2nd Ed.) (Oxford: Elsevier) pp123-135

    [2]

    Peranio N, Li Y J, Roters F, Raabe D 2010 Mater. Sci. Eng. A 527 4161

    [3]

    Rocha R O, Melo T M F, Pereloma E V, Santos D B 2005 Mater. Sci. Eng. A 391 296

    [4]

    Srolovitz D J, Grest G S, Anderson M P 1986 Acta Metall. 34 1833

    [5]

    Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. B 78 024113

    [6]

    Srolovitz D J, Grest G S, Anderson M P, Rollett A D 1988 Acta Metall. 36 2115

    [7]

    Rollett A D, Srolovitz D J, Anderson M P, Doherty R D 1992 Acta Metall. Mater. 40 3475

    [8]

    Avrami M 1939 J. Chem. Phys. 7 1103

    [9]

    Raabe D, Hantcherli L 2005 Comput. Mater. Sci. 34 299

    [10]

    Chun Y B, Semiatin S L, Hwang S K 2006 Acta Mater. 54 3673

    [11]

    Fan D, Chen L Q 1997 Acta Mater. 45 4145

    [12]

    Fang B, Huang C Z, Liu H L, Xu C H, Sun S 2009 J. Mater. Proc. Tech. 209 4568

    [13]

    Bellucci D, Cannillo V, Sola A 2010 Ceram. Int. 36 1983

    [14]

    Kong F R, Santhanakrishnan S, Lin D, Kovacevic R 2009 J. Mater. Proc. Tech. 209 5996

    [15]

    Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Juul Jensen D, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D 1997 Mater. Sci. Eng. A 238 219

    [16]

    Humphreys F J 1997 Acta Mater. 45 4231

    [17]

    Arrhenius S 1889 Z. Phys. Chem. 4 226

    [18]

    Ivasishin O M, Shevchenko S V, Semiatin S L 2002 Mater. Sci. Eng. A 332 343

    [19]

    Read W T, Shockley W 1950 Phys. Rev. 78 275

    [20]

    Gil F X, Planell J A 2000 Mater. Sci. Eng. A 283 17

    [21]

    Gil F X, Rodriguez D, Planell J A 1995 Scripta Metall. Mater. 33 1361

    [22]

    Da Costa Teixeira J, Appolaire B, Aeby-Gautier E, Denis S, Bruneseaux F 2006 Acta Mater. 54 4261

    [23]

    Roth T A, Henning W D 1985 Mater. Sci. Eng. A 76 187

    [24]

    Suppayak P 1977 M. S. Dissertation (Kansas: Kansas State University)

    [25]

    Rollett A D, Holm E A 1997 Proceedings 3rd International Conference on Recrystallization and Related Phenomena (ReX’96) Monterey, October 21-24, 1996 p31

    [26]

    Sha W, Malinov S 2009 Titanium Alloys: Modelling of Microstructure, Properties and Applications (Cambridge: Woodhead Publishing) p233

    [27]

    Ding R, Guo Z X 2001 Acta Mater. 49 3163

    [28]

    Ding R, Guo Z X, Wilson A 2002 Mater. Sci. Eng. A 327 233

    [29]

    Li S, Yang L, Lei L, Wei C, Zhang H 2012 J. Mater. Sci. Technol. 28 1015

  • [1]

    Humphreys F J, Hatherly M 2004 Recrystallization and Related Annealing Phenomena (2nd Ed.) (Oxford: Elsevier) pp123-135

    [2]

    Peranio N, Li Y J, Roters F, Raabe D 2010 Mater. Sci. Eng. A 527 4161

    [3]

    Rocha R O, Melo T M F, Pereloma E V, Santos D B 2005 Mater. Sci. Eng. A 391 296

    [4]

    Srolovitz D J, Grest G S, Anderson M P 1986 Acta Metall. 34 1833

    [5]

    Moelans N, Blanpain B, Wollants P 2008 Phys. Rev. B 78 024113

    [6]

    Srolovitz D J, Grest G S, Anderson M P, Rollett A D 1988 Acta Metall. 36 2115

    [7]

    Rollett A D, Srolovitz D J, Anderson M P, Doherty R D 1992 Acta Metall. Mater. 40 3475

    [8]

    Avrami M 1939 J. Chem. Phys. 7 1103

    [9]

    Raabe D, Hantcherli L 2005 Comput. Mater. Sci. 34 299

    [10]

    Chun Y B, Semiatin S L, Hwang S K 2006 Acta Mater. 54 3673

    [11]

    Fan D, Chen L Q 1997 Acta Mater. 45 4145

    [12]

    Fang B, Huang C Z, Liu H L, Xu C H, Sun S 2009 J. Mater. Proc. Tech. 209 4568

    [13]

    Bellucci D, Cannillo V, Sola A 2010 Ceram. Int. 36 1983

    [14]

    Kong F R, Santhanakrishnan S, Lin D, Kovacevic R 2009 J. Mater. Proc. Tech. 209 5996

    [15]

    Doherty R D, Hughes D A, Humphreys F J, Jonas J J, Juul Jensen D, Kassner M E, King W E, McNelley T R, McQueen H J, Rollett A D 1997 Mater. Sci. Eng. A 238 219

    [16]

    Humphreys F J 1997 Acta Mater. 45 4231

    [17]

    Arrhenius S 1889 Z. Phys. Chem. 4 226

    [18]

    Ivasishin O M, Shevchenko S V, Semiatin S L 2002 Mater. Sci. Eng. A 332 343

    [19]

    Read W T, Shockley W 1950 Phys. Rev. 78 275

    [20]

    Gil F X, Planell J A 2000 Mater. Sci. Eng. A 283 17

    [21]

    Gil F X, Rodriguez D, Planell J A 1995 Scripta Metall. Mater. 33 1361

    [22]

    Da Costa Teixeira J, Appolaire B, Aeby-Gautier E, Denis S, Bruneseaux F 2006 Acta Mater. 54 4261

    [23]

    Roth T A, Henning W D 1985 Mater. Sci. Eng. A 76 187

    [24]

    Suppayak P 1977 M. S. Dissertation (Kansas: Kansas State University)

    [25]

    Rollett A D, Holm E A 1997 Proceedings 3rd International Conference on Recrystallization and Related Phenomena (ReX’96) Monterey, October 21-24, 1996 p31

    [26]

    Sha W, Malinov S 2009 Titanium Alloys: Modelling of Microstructure, Properties and Applications (Cambridge: Woodhead Publishing) p233

    [27]

    Ding R, Guo Z X 2001 Acta Mater. 49 3163

    [28]

    Ding R, Guo Z X, Wilson A 2002 Mater. Sci. Eng. A 327 233

    [29]

    Li S, Yang L, Lei L, Wei C, Zhang H 2012 J. Mater. Sci. Technol. 28 1015

  • [1] 上官丹骅, 闫威华, 魏军侠, 高志明, 陈艺冰, 姬志成. 多物理耦合计算中动态输运问题高效蒙特卡罗模拟方法. 物理学报, 2022, 71(9): 090501. doi: 10.7498/aps.71.20211474
    [2] 陈忠, 赵子甲, 吕中良, 李俊汉, 潘冬梅. 基于蒙特卡罗-离散纵标方法的氘氚激光等离子体聚变反应率数值模拟. 物理学报, 2019, 68(21): 215201. doi: 10.7498/aps.68.20190440
    [3] 李树. 光子与相对论麦克斯韦分布电子散射截面的蒙特卡罗计算方法. 物理学报, 2018, 67(21): 215201. doi: 10.7498/aps.67.20180932
    [4] 王宏明, 朱弋, 李桂荣, 郑瑞. 强磁与应力场耦合作用下AZ31镁合金塑性变形行为. 物理学报, 2016, 65(14): 146101. doi: 10.7498/aps.65.146101
    [5] 林舒, 闫杨娇, 李永东, 刘纯亮. 微波器件微放电阈值计算的蒙特卡罗方法研究. 物理学报, 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [6] 王海华, 孙贤明. 两种按比例混合颗粒系的多次散射模拟. 物理学报, 2012, 61(15): 154204. doi: 10.7498/aps.61.154204
    [7] 文德智, 卓仁鸿, 丁大杰, 郑慧, 成晶, 李正宏. 蒙特卡罗模拟中相关变量随机数序列的产生方法 . 物理学报, 2012, 61(22): 220204. doi: 10.7498/aps.61.220204
    [8] 张宇, 葛昌纯, 沈卫平, 邱成杰. 喷射成型FGH4095静态再结晶组织特征. 物理学报, 2012, 61(20): 208101. doi: 10.7498/aps.61.208101
    [9] 张保花, 郭福强, 孙毅, 王俊珺, 李艳青, 智丽丽. 溶剂热再结晶合成由纳米颗粒自组装成的一维CdS纳米棒. 物理学报, 2012, 61(13): 138101. doi: 10.7498/aps.61.138101
    [10] 张宪刚, 宗亚平, 吴艳. 相场再结晶储能释放模型与显微组织演变的模拟研究. 物理学报, 2012, 61(8): 088104. doi: 10.7498/aps.61.088104
    [11] 张宝武, 张萍萍, 马艳, 李同保. 铬原子束横向一维激光冷却的蒙特卡罗方法仿真. 物理学报, 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [12] 刘涛, 郭朝晖, 李岫梅, 李卫. 微观组织结构对铂钴永磁合金磁性能的影响. 物理学报, 2009, 58(3): 2030-2034. doi: 10.7498/aps.58.2030
    [13] 张飞鹏, 路清梅, 张久兴, 张忻. 双掺杂BaxAgyCa3-x-yCo4O9氧化物的织构与电输运性能. 物理学报, 2009, 58(4): 2697-2701. doi: 10.7498/aps.58.2697
    [14] 刘红, 王西涛, 陈冷. 含Nb微合金钢应变诱导析出的模拟. 物理学报, 2009, 58(13): 151-S155. doi: 10.7498/aps.58.151
    [15] 宗亚平, 王明涛, 郭巍. 再结晶和外力场下第二相析出的相场法模拟. 物理学报, 2009, 58(13): 161-S168. doi: 10.7498/aps.58.161
    [16] 孙贤明, 韩一平, 史小卫. 降雨融化层后向散射的蒙特卡罗仿真. 物理学报, 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [17] 杨 白, 沈保根, 赵同云, 孙继荣. 纳米晶复合Pr2Fe14B/α-Fe快淬薄带的织构与磁性. 物理学报, 2007, 56(6): 3527-3532. doi: 10.7498/aps.56.3527
    [18] 郝樊华, 胡广春, 刘素萍, 龚 建, 向永春, 黄瑞良, 师学明, 伍 钧. 钚体源样品γ能谱计算的蒙特卡罗方法. 物理学报, 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
    [19] 张建民, 徐可为. 银和铜膜中异常晶粒生长和织构变化的实验研究. 物理学报, 2003, 52(1): 145-149. doi: 10.7498/aps.52.145
    [20] 李灿华, 廖 源, 常 超, 王冠中, 方容川. 氮气氛下(100)织构金刚石薄膜的成核与生长研究. 物理学报, 2000, 49(9): 1756-1763. doi: 10.7498/aps.49.1756
计量
  • 文章访问数:  4021
  • PDF下载量:  843
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-26
  • 修回日期:  2013-05-30
  • 刊出日期:  2013-09-05

两相钛合金再结晶退火组织与织构演变的蒙特卡罗模拟

  • 1. 中南大学材料科学与工程学院, 长沙 410083;
  • 2. 广东省肇庆市质量计量监督检测所, 肇庆 526060;
  • 3. 中航商用航空发动机有限责任公司, 上海 200241;
  • 4. 北京航空材料研究院, 北京 100095;
  • 5. 有色金属材料科学与工程教育部重点实验室, 长沙 410012
    基金项目: 国家重点基础研究发展计划(批准号:2007CB613803)和国家自然科学基金(批准号:51271204)资助的课题.

摘要: 蒙特卡罗(MC)方法被广泛应用于模拟金属材料在退火过程中的静态再结晶行为. 在已有两相材料晶粒长大MC模型基础上, 引入形核阶段, 综合考虑再结晶晶粒吞并形变晶粒和再结晶晶粒竞争长大两种情况, 建立了退火时两相合金再结晶MC模型.结合电子背散射衍射所测 初始晶粒形貌、相成分、晶体学取向及应变储能相对值, 该模型被应用于TC11钛合金退火过程中的微观组织及织构演变模拟.结果表明, 所建模型能够较好体现退火过程中两相晶粒的形核及晶粒长大行为. 与β相相比较, α相具有较低的再结晶速率和较高的晶粒长大速率, 前者主要归结于α相较低的初始应变储能, 后者则体现了该条件下初始组织形貌、分布及两相比例对晶粒长大具有重要影响; 由于非均匀形核的影响, 模拟得到的再结晶速率变化与 假设均匀形核的Johnson-Mehl-Avrami-Kolmogorov 再结晶方程存在明显差异.同时, 两相的基本织构特征在退火过程中无明显变化, 但织构强度增加.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回