搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

替代掺杂的MnNiGe1-xGax合金中马氏体相变和磁-结构耦合特性

张玉洁 刘恩克 张红国 李贵江 陈京兰 王文洪 吴光恒

引用本文:
Citation:

替代掺杂的MnNiGe1-xGax合金中马氏体相变和磁-结构耦合特性

张玉洁, 刘恩克, 张红国, 李贵江, 陈京兰, 王文洪, 吴光恒

Martensitic transformation and magnetic properties in Ga-doped MMX alloy MnNiGe1-x Gax (x=00.30)

Zhang Yu-Jie, Liu En-Ke, Zhang Hong-Guo, Li Gui-Jiang, Chen Jing-Lan, Wang Wen-Hong, Wu Guang-Heng
PDF
导出引用
  • 研究了MnNiGe1-xGax (x=00.30) 系列合金中成分、结构、马氏体相变性质和磁性的相互关系. 在较小的成分范围内, Ga取代Ge元素可有效地将马氏体相变温度降低近400 K. Ga的引入削弱了体系中的共价成键作用, 马氏体相显示出磁交换作用的增强. 相图显示, 掺杂使马氏体相变先后穿过TN 和TC 两个磁有序温度, 居里温度窗口效应在体系有存在的可能, 磁性对相变温度的成分关系有所影响. 实验观察到合金变磁转变的特性及相变行为对制备方法的敏感性. 这些特性的发现, 有利于进一步优化这类材料的磁结构和相变特性, 获得具有应用价值的新材料.
    The characteristics of martensitic transformation and magnetostructural coupling have been investigated for MnNiGe1-xGax (x=00.30) alloys. It has been found that the martensitic transformation temperature of the system can be deceased about 400 K by doping a low content of Ga to substitute for Ge. Adding Ga may weaken the hybridization and at the same time enhance the magnetic exchange interaction, which are responsible for the increase of the atomic moment and the Curie temperature in the austenitic phase. The structural and magnetic phase diagram was obtained to show some important points: 1) the decreased transition temperature successively pass through the Neel temperature and the Curie temperature; 2) the Curie temperature window still opens during the doping; 3) the magnetism can effectively affect the transformation behavior. The metamagnetization and the preparation influence on the transformation are also observed. These properties are significantly beneficial to the development of new magnetostructural materials.
    • 基金项目: 国家自然科学基金(批准号:51171206)资助的课题.
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 51171206).
    [1]

    Castelliz L 1953 monatshefte fur chemie 84 765

    [2]

    SzytuLa A, Pedziwiatr A T, Tomkowicz Z, Bazela W 1981 Journal of Magnetism and Magnetic Materials 25 176

    [3]

    Jeitschko W 1975 Acta Cryst. B 31 1187

    [4]

    Johnson V 1975 Inorganic Chemistry 14 1117

    [5]

    Koyama K, Sakai M, Kanomata T, Watanabe 2004 Japanese Journal of Applied Physics 43 8036

    [6]

    Song L, Tegus O, Bruck E, Dagula W, Gortenmulder T J, Buschow K H J 2006 IEEE Transactions on Magnetics 42 3776

    [7]

    Dung N H, Zhang L, Ou Z Q, Bruck E 2011 Applied Physics Letters 99 092511

    [8]

    Trung N T, Zhang L, Caron L, Buschow K H J, Bruck E 2010 Applied Physics Letters 96 172504

    [9]

    Ma S C, Zheng Y X, Xuan H C, Shen L J, Cao Q Q, Wang D H, Zhong Z C, Du Y W 2012 Journal of Magnetism and Magnetic Materials 324 135

    [10]

    Barcza A, Gercsi Z, Knight K S, Sandeman K G 2010 Physical Review Letters 104 247202

    [11]

    Liu E K, Zhu W, Feng L, Chen J L, Wang W H, Wu G H, Liu H Y, Meng F B, Luo H Z, Li Y X 2010 Europhysics Letters 91 17003

    [12]

    Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B, de Boer F 2012 Nature Communications 3 873

    [13]

    Liu E K, Wang W H, Zhang H W, Wu G H 2012 Materials China 31 13

    [14]

    Hamer J B A, Daou R, Özcan S, Mathur N D, Fray D J, Sandeman K G 2009 Journal of Magnetism and Magnetic Materials 321 3535

    [15]

    Liu E K, Du Y, Chen J L, Wang W H, Zhang H W, Wu G H 2011 IEEE Transactions on Magnetics 47 4041

    [16]

    Dincer I, Yzak E, Durak G, Elerman Y, Bell A M T, Ehrenberg H 2012 Journal of Alloys and Compounds 540 236

    [17]

    Samanta T, Dubenko I, Quetz A, Temple S, Stadler S, Ali N 2012 Applied Physics Letters 100 052404

    [18]

    Anzai S, Ozawa K 1978 Phys. Rev. B 18 2173

    [19]

    Liu E K, Zhang H G, Xu G Z, Zhang X M, Ma R S, Wang W H, Chen J L, Zhang H W, Wu G H, Feng L, Zhang X X 2013 Applied Physics Letters 102 122405

    [20]

    Bazela W, Szytula A, Todorović J, Tomkowicz Z, Zieba A 1976 Physica Status solidi (a) 38 721

  • [1]

    Castelliz L 1953 monatshefte fur chemie 84 765

    [2]

    SzytuLa A, Pedziwiatr A T, Tomkowicz Z, Bazela W 1981 Journal of Magnetism and Magnetic Materials 25 176

    [3]

    Jeitschko W 1975 Acta Cryst. B 31 1187

    [4]

    Johnson V 1975 Inorganic Chemistry 14 1117

    [5]

    Koyama K, Sakai M, Kanomata T, Watanabe 2004 Japanese Journal of Applied Physics 43 8036

    [6]

    Song L, Tegus O, Bruck E, Dagula W, Gortenmulder T J, Buschow K H J 2006 IEEE Transactions on Magnetics 42 3776

    [7]

    Dung N H, Zhang L, Ou Z Q, Bruck E 2011 Applied Physics Letters 99 092511

    [8]

    Trung N T, Zhang L, Caron L, Buschow K H J, Bruck E 2010 Applied Physics Letters 96 172504

    [9]

    Ma S C, Zheng Y X, Xuan H C, Shen L J, Cao Q Q, Wang D H, Zhong Z C, Du Y W 2012 Journal of Magnetism and Magnetic Materials 324 135

    [10]

    Barcza A, Gercsi Z, Knight K S, Sandeman K G 2010 Physical Review Letters 104 247202

    [11]

    Liu E K, Zhu W, Feng L, Chen J L, Wang W H, Wu G H, Liu H Y, Meng F B, Luo H Z, Li Y X 2010 Europhysics Letters 91 17003

    [12]

    Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B, de Boer F 2012 Nature Communications 3 873

    [13]

    Liu E K, Wang W H, Zhang H W, Wu G H 2012 Materials China 31 13

    [14]

    Hamer J B A, Daou R, Özcan S, Mathur N D, Fray D J, Sandeman K G 2009 Journal of Magnetism and Magnetic Materials 321 3535

    [15]

    Liu E K, Du Y, Chen J L, Wang W H, Zhang H W, Wu G H 2011 IEEE Transactions on Magnetics 47 4041

    [16]

    Dincer I, Yzak E, Durak G, Elerman Y, Bell A M T, Ehrenberg H 2012 Journal of Alloys and Compounds 540 236

    [17]

    Samanta T, Dubenko I, Quetz A, Temple S, Stadler S, Ali N 2012 Applied Physics Letters 100 052404

    [18]

    Anzai S, Ozawa K 1978 Phys. Rev. B 18 2173

    [19]

    Liu E K, Zhang H G, Xu G Z, Zhang X M, Ma R S, Wang W H, Chen J L, Zhang H W, Wu G H, Feng L, Zhang X X 2013 Applied Physics Letters 102 122405

    [20]

    Bazela W, Szytula A, Todorović J, Tomkowicz Z, Zieba A 1976 Physica Status solidi (a) 38 721

计量
  • 文章访问数:  3292
  • PDF下载量:  498
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-30
  • 修回日期:  2013-06-18
  • 刊出日期:  2013-10-05

替代掺杂的MnNiGe1-xGax合金中马氏体相变和磁-结构耦合特性

  • 1. 中国科学院物理研究所磁学国家重点实验室, 北京 100190
    基金项目: 国家自然科学基金(批准号:51171206)资助的课题.

摘要: 研究了MnNiGe1-xGax (x=00.30) 系列合金中成分、结构、马氏体相变性质和磁性的相互关系. 在较小的成分范围内, Ga取代Ge元素可有效地将马氏体相变温度降低近400 K. Ga的引入削弱了体系中的共价成键作用, 马氏体相显示出磁交换作用的增强. 相图显示, 掺杂使马氏体相变先后穿过TN 和TC 两个磁有序温度, 居里温度窗口效应在体系有存在的可能, 磁性对相变温度的成分关系有所影响. 实验观察到合金变磁转变的特性及相变行为对制备方法的敏感性. 这些特性的发现, 有利于进一步优化这类材料的磁结构和相变特性, 获得具有应用价值的新材料.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回