搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光梯度力驱动纳谐振器的非线性动力学特性研究

刘岩 张文明 仲作阳 彭志科 孟光

引用本文:
Citation:

光梯度力驱动纳谐振器的非线性动力学特性研究

刘岩, 张文明, 仲作阳, 彭志科, 孟光
cstr: 32037.14.aps.63.026201

Nonlinear dynamic analysis of nano-resonator driven by optical gradient force

Liu Yan, Zhang Wen-Ming, Zhong Zuo-Yang, Peng Zhi-Ke, Meng Guang
cstr: 32037.14.aps.63.026201
PDF
导出引用
在线预览
  • 光梯度力作为纳谐振器的一种新型驱动方式,得到了广泛关注. 本文研究了光梯度力的固有非线性特性,建立了光梯度力驱动圆环与辐条谐振系统的动力学模型. 揭示了入射光功率以及几何参数对系统的非线性动力学响应的影响规律. 研究表明:光梯度力会引起系统呈现刚度软化效应,随着入射光功率增大,系统主共振峰值明显增大,且谐振频率随着振幅增大而产生较大偏移;两环初始间隙增大,系统振动幅值和谐振频率均下降;辐条厚度越大,系统主共振峰值和谐振频率均减小. 因此,可以通过调节入射光功率来实现圆环辐条谐振器的频率调节,为光梯度力驱动纳谐振器动力学设计和性能预测提供理论参考.
    Optical gradient force, as a novel type of actuation force for nano-resonators, has recently attracted a lot of attention. In this paper, the inherent nonlinear characteristics of the optical gradient force are analyzed. A nonlinear dynamic model of the ring and spoke resonant system driven by optical gradient force is proposed. The influences of optical input power and geometric parameters on the nonlinear dynamic responses of the system are investigated. The results show that the optical gradient force can cause stiffness to soften. The amplitude increases and the resonance frequency shifts as the input optical power increases. Moreover, the amplitude and resonance frequency of the nano-resonator decrease as the initial gap of the rings increases. Therefore, the resonance frequency can be adjusted by changing the optical input power. This work can be useful for the further design and performance prediction of nano-resonators driven by the optical gradient force.
    • 基金项目: 国家自然科学基金(批准号:11322215,11342001)和上海市青年科技启明星计划(批准号:11QA1403400)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11322215, 11342001) and the Shanghai "Phosphor" Science Foundation, China (Grant No. 11QA1403400)
    [1]

    Zhang F L, Zhao X P 2007 Acta Phys. Sin. 56 4661 (in Chinese) [张富利, 赵晓鹏 2007 物理学报 56 4661]

    [2]

    Gu F, Zhang J H, Yang L J, Gu B 2011 Acta Phys. Sin. 60 056103 (in Chinese) [顾芳, 张加宏, 杨丽娟, 顾斌 2011 物理学报 60 056103]

    [3]

    Aghababa M P 2012 Chin. Phys. B 21 100505

    [4]

    Churenkov A V 1996 Sensors and Actuators A 57 21

    [5]

    Lammerink T S J, Elwenspoek M, Fluitman J H J 1991 Sensors and Actuators A 27 685

    [6]

    Povinelli M L, Loncar M, Ibanescu M, Smythe E J, Johnson S G, Capasso F 2005 Opt. Lett. 30 3042

    [7]

    Povinelli M L, Johnson S G, Loncar M, Ibanescu M, Smythe E J, Capasso F, Joannopoulos J D 2005 Opt. Express 13 8286

    [8]

    Rakich P T, Popovic M A, Wang Z 2009 Opt. Express 17 18116

    [9]

    Pernice W H P, Li M, Tang H X 2009 Opt. Express 17 1806

    [10]

    Li M, Pernice W H P, Xiong C, Baehr-Jones T, Hochberg M, Tang H X 2008 Nature Lett. 456 480

    [11]

    Pernice W H P, Li M, Tang H X 2009 Opt. Express 17 1806

    [12]

    Li M, Pernice W H P, Tang H X 2009 Nature Photon. 3 464

    [13]

    Cai H, Xu K J, Liu A Q, Fang Q, Yu M B 2012 Appl. Phys. Lett. 100 013108

    [14]

    Eichenfield M, Michael C P, Perahia R, Painter O 2007 Nature Photon. 1 416

    [15]

    Rosenberg J, Lin Q, Painter O 2009 Nature Photon. 3 478

    [16]

    Lin Q, Rosenberg J, Chang D, Camacho R, Eichenfield M, Vahala K J, Painter O 2010 Nature Photon. 4 236

    [17]

    Wiederhecker G S, Chen L, Gondarenko A, Lipson M 2009 Nature Lett. 462 633

    [18]

    Evoy S, Carr D W, Sekaric L, Olkhovets A, Parpia J M, Craighead H G 1999 Appl. Phys. Lett. 86 6072

    [19]

    Vlaminck I De, Greve K De, Lagae L, Borghs G 2006 Appl. Phys. Lett. 88 063112

    [20]

    Zhao H, Luo W, Zheng H Y, Yang J L, Yang Y H 2012 Chin. Phys. B 21 100702

    [21]

    Lin Q, Rosenberg J, Jiang X S, Vahala K J, Painter O 2009 Phys. Rev. Lett. 103 103601

    [22]

    Hu Y C, Chang C M, Huang S C 2004 Sensors and Actuators A 112 155

    [23]

    Bao M, Yang H 2004 Sensors and Actuators A 136 1007

  • [1]

    Zhang F L, Zhao X P 2007 Acta Phys. Sin. 56 4661 (in Chinese) [张富利, 赵晓鹏 2007 物理学报 56 4661]

    [2]

    Gu F, Zhang J H, Yang L J, Gu B 2011 Acta Phys. Sin. 60 056103 (in Chinese) [顾芳, 张加宏, 杨丽娟, 顾斌 2011 物理学报 60 056103]

    [3]

    Aghababa M P 2012 Chin. Phys. B 21 100505

    [4]

    Churenkov A V 1996 Sensors and Actuators A 57 21

    [5]

    Lammerink T S J, Elwenspoek M, Fluitman J H J 1991 Sensors and Actuators A 27 685

    [6]

    Povinelli M L, Loncar M, Ibanescu M, Smythe E J, Johnson S G, Capasso F 2005 Opt. Lett. 30 3042

    [7]

    Povinelli M L, Johnson S G, Loncar M, Ibanescu M, Smythe E J, Capasso F, Joannopoulos J D 2005 Opt. Express 13 8286

    [8]

    Rakich P T, Popovic M A, Wang Z 2009 Opt. Express 17 18116

    [9]

    Pernice W H P, Li M, Tang H X 2009 Opt. Express 17 1806

    [10]

    Li M, Pernice W H P, Xiong C, Baehr-Jones T, Hochberg M, Tang H X 2008 Nature Lett. 456 480

    [11]

    Pernice W H P, Li M, Tang H X 2009 Opt. Express 17 1806

    [12]

    Li M, Pernice W H P, Tang H X 2009 Nature Photon. 3 464

    [13]

    Cai H, Xu K J, Liu A Q, Fang Q, Yu M B 2012 Appl. Phys. Lett. 100 013108

    [14]

    Eichenfield M, Michael C P, Perahia R, Painter O 2007 Nature Photon. 1 416

    [15]

    Rosenberg J, Lin Q, Painter O 2009 Nature Photon. 3 478

    [16]

    Lin Q, Rosenberg J, Chang D, Camacho R, Eichenfield M, Vahala K J, Painter O 2010 Nature Photon. 4 236

    [17]

    Wiederhecker G S, Chen L, Gondarenko A, Lipson M 2009 Nature Lett. 462 633

    [18]

    Evoy S, Carr D W, Sekaric L, Olkhovets A, Parpia J M, Craighead H G 1999 Appl. Phys. Lett. 86 6072

    [19]

    Vlaminck I De, Greve K De, Lagae L, Borghs G 2006 Appl. Phys. Lett. 88 063112

    [20]

    Zhao H, Luo W, Zheng H Y, Yang J L, Yang Y H 2012 Chin. Phys. B 21 100702

    [21]

    Lin Q, Rosenberg J, Jiang X S, Vahala K J, Painter O 2009 Phys. Rev. Lett. 103 103601

    [22]

    Hu Y C, Chang C M, Huang S C 2004 Sensors and Actuators A 112 155

    [23]

    Bao M, Yang H 2004 Sensors and Actuators A 136 1007

  • [1] 宋润, 陈玲, 李传东, 曾晓洋. 分数阶忆阻桥式串扰耦合HR-FN神经元的动力学研究. 物理学报, 2026, 75(3): . doi: 10.7498/aps.75.20251306
    [2] 李惟嘉, 申晓红, 李亚安, 张奎. 基于阵列多通道数据的非线性特征参数提取. 物理学报, 2025, 74(4): 040501. doi: 10.7498/aps.74.20241512
    [3] 边嘉仪, 孙兆祺, 王秋蘋, 王飞, 邓涛, 林晓东, 高子叶. 泵浦调制下全固态被动调Q Nd:YAG/Cr:YAG激光器非线性动力学研究. 物理学报, 2025, 74(18): 184201. doi: 10.7498/aps.74.20250660
    [4] 李惟嘉, 申晓红, 李亚安. 一种无偏差的多通道多尺度样本熵算法. 物理学报, 2024, 73(11): 110502. doi: 10.7498/aps.73.20231133
    [5] 黄晓东, 贺彬烜, 宋震, 弭元元, 屈支林, 胡岗. 心律失常的多尺度建模、计算与动力学理论进展综述. 物理学报, 2024, 73(21): 218702. doi: 10.7498/aps.73.20240977
    [6] 胡恒儒, 龚志强, 王健, 乔盼节, 刘莉, 封国林. ENSO气温关联网络结构特征差异及成因分析. 物理学报, 2021, 70(24): 249201. doi: 10.7498/aps.70.20210825
    [7] 张永燕, 吴九汇, 曾涛, 钟宏民. 利用激光光梯度力消除气溶胶雾霾粒子的机理研究. 物理学报, 2016, 65(7): 074203. doi: 10.7498/aps.65.074203
    [8] 党小宇, 李洪涛, 袁泽世, 胡文. 基于数模混合的混沌映射实现. 物理学报, 2015, 64(16): 160501. doi: 10.7498/aps.64.160501
    [9] 于洁, 郭霞生, 屠娟, 章东. 超声造影剂微泡非线性动力学响应的机理及相关应用. 物理学报, 2015, 64(9): 094306. doi: 10.7498/aps.64.094306
    [10] 林建潇, 吴九汇, 刘爱群, 陈喆, 雷浩. 光梯度力驱动的纳米硅基光开关. 物理学报, 2015, 64(15): 154209. doi: 10.7498/aps.64.154209
    [11] 雷鹏飞, 张家忠, 王琢璞, 陈嘉辉. 非定常瞬态流动过程中的Lagrangian拟序结构与物质输运作用. 物理学报, 2014, 63(8): 084702. doi: 10.7498/aps.63.084702
    [12] 廖志贤, 罗晓曙. 基于小世界网络模型的光伏微网系统同步方法研究. 物理学报, 2014, 63(23): 230502. doi: 10.7498/aps.63.230502
    [13] 余洋, 米增强. 机械弹性储能机组储能过程非线性动力学模型与混沌特性. 物理学报, 2013, 62(3): 038403. doi: 10.7498/aps.62.038403
    [14] 王从庆, 吴鹏飞, 周鑫. 基于最小关节力矩优化的自由浮动空间刚柔耦合机械臂混沌动力学建模与控制. 物理学报, 2012, 61(23): 230503. doi: 10.7498/aps.61.230503
    [15] 郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼. 偏振保持光反馈下1550 nm垂直腔面发射激光器的非线性动力学特性研究. 物理学报, 2012, 61(23): 234203. doi: 10.7498/aps.61.234203
    [16] 吕玉祥, 孙帅, 杨星. 基于光注入Fabry-Perot半导体激光器实现同步全光分路时钟提取与波长转换. 物理学报, 2009, 58(4): 2467-2475. doi: 10.7498/aps.58.2467
    [17] 牛生晓, 张明江, 安 义, 贺虎成, 李静霞, 王云才. 外光注入半导体激光器实现重复速率可调全光时钟分频. 物理学报, 2008, 57(11): 6998-7004. doi: 10.7498/aps.57.6998
    [18] 盛正卯, 王 庸, 马 健, 郑思波. 静电波对磁化等离子体的共振加热的理论及数值模拟研究. 物理学报, 2006, 55(3): 1301-1306. doi: 10.7498/aps.55.1301
    [19] 李新霞, 唐 翌. 阻尼作用下一维体系热传导性质的研究. 物理学报, 2006, 55(12): 6556-6561. doi: 10.7498/aps.55.6556
    [20] 姜可宇, 蔡志明. 变尺度概率净化法的优化. 物理学报, 2005, 54(10): 4596-4601. doi: 10.7498/aps.54.4596
计量
  • 文章访问数:  8741
  • PDF下载量:  589
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-08-06
  • 修回日期:  2013-09-27
  • 刊出日期:  2014-01-05

/

返回文章
返回