搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe50Cu50合金熔体相分离过程的分子动力学模拟

齐玉 曲昌荣 王丽 方腾

引用本文:
Citation:

Fe50Cu50合金熔体相分离过程的分子动力学模拟

齐玉, 曲昌荣, 王丽, 方腾

Liquid-liquid phase segregation process of Fe50Cu50 melt by molecular dynamics simulation

Qi Yu, Qu Chang-Rong, Wang Li, Fang Teng
PDF
导出引用
  • 基于镶嵌原子势,采用分子动力学模拟的方法探讨了Fe50Cu50合金熔体在1823 K下液-液相分离过程. 结果发现: 熔体中同类原子配位数随弛豫时间的延长逐渐增大,而异类原子配位数逐渐减少;由Bhatia-Thornton结构因子SCC(q)获得的相关长度随时间的变化也呈现出明显的递增趋势,表明该合金熔体在该温度下发生了液–液相分离. 原子轨迹的可视化显示结果发现,相分离的初期,体系呈明显的网络状组织,随时间的延长,异类原子逐渐分离,最终形成富Fe和富Cu的相分离组织,符合调幅分解特征. 与Fe75Cu25合金熔体的相分离过程对比发现,Fe与Cu原子数目相差越小,相分离行为越剧烈,形成稳定分层结构所需的时间越短. 以上研究从原子尺度上表征了金属熔体的相分离过程.
    Molecular dynamics simulation based on the newly developed embedded atom method has been performed to explore the microstructure of liquid Fe50Cu50 alloy. The results show that coordination numbers (CNs) of Fe-Fe and Cu-Cu for Fe50Cu50 melt gradually increase with relaxation time increasing, and they are 9.9 and 9.3 respectively as the liquid is in an equilibrium state; while the CN of heterogeneous atomic pairs Fe-Cu gradually decreases, and it is about 4.6. The correlation length (CL) extracted from Bhatia-Thornton (B-T) structure factor increases with relaxation time increasing. Both CN and CL indicate that the Fe50Cu50 melt exhibits liquid-liquid (L-L) phase separation. The interconnected type of structure can be observed in the Fe50Cu50 melt at the early stage, then the heterogeneous atomic pairs separate gradually with time going by, the Fe-rich and Cu-rich structure are formed, which shows the characteristics of spinodal decomposition. By comparison, the atom snapshot of Fe75Cu25 melt is also visualized in the paper, and the finding indicates that the smaller number difference between Fe atom and Cu atom may lead to the stronger L-L phase separation, as a result of shorter time to reach stable layer-like structure. Our studies mentioned above characterize L-L phase separation of metallic liquid on the atomic scale.
    • 基金项目: 国家自然科学基金(批准号:51371108)和山东大学(威海)研究生科研创新基金(批准号:yjs12032)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51371108) and the Graduate Innovation Foundation of Shandong University at Weihai, China (Grant No. yjs12032).
    [1]

    Li D, Robinson M B, Rathz T J, Williams G 1998 Mater. Lett. 36 152

    [2]

    Ojha S N, Chaitonuinfay K 1978 Trans. Indian Inst. Metals 31 208

    [3]

    Koch C C 1995 Mater. Trans. JIM 36 85

    [4]

    Ratke L, Diefenbach S 1995 Mater. Sci. Eng. R. 15 263

    [5]

    Schroenitz M, Dreizin E L 2003 J. Mater. Res. 18 1827

    [6]

    Islam F, Medraj M 2004 Proceedings of CSME Forum p921

    [7]

    Awe O E, Akinlade O, Hussain L A 2005 J. Alloys Compd. 387 256

    [8]

    Kuendig A 2004 Acta Mater. 52 2441

    [9]

    Sohn S W, Yook W, Kim W T, Kim D H 2012 Intermetallics 23 57

    [10]

    Cahn J W, Hilliard J E 1959 J. Chem. Phys. 31 539

    [11]

    Cahn J W, Hilliard J E 1959 J. Chem. Phys. 31 688

    [12]

    Siggia E D 1979 Phys. Rev. A 20 595

    [13]

    Aarts D G A L, Schmidt M, Lekkerkerker H N W 2004 Science 304 847

    [14]

    Gunton J D, Miguel M S, Sahni P S 1983 Phase Transitions and Critical Phenomena (London: Academic Press) p269

    [15]

    Bhat S, Tuninier R, Schurtenberger P 2006 J. Phys. Condens. Matter 18 L339

    [16]

    Bates F S, Wiltzius P 1989 J. Chem. Phys. 91 3258

    [17]

    Bailey A E, Poon W C K, Christianson R J, Schofied A B, Gasser U, Prasad V, Manley S, Segre P N, Cipelletti L, Meyer W V, Doherty Mp, Sankaran S, Jankovsky A L, Shiley W L, Bowen J P, Eggers J C, Kurta C, Lorik Jr T, Pusey P N, Weitz D A 2007 Phys. Rev. Lett. 99 205701

    [18]

    Tanaka H 1995 Phys. Rev. E 51 1313

    [19]

    Ren Q, Wang N, Zhang L, Wang J Y, Zheng Y P, Yao W J 2012 Acta Phys. Sin. 61 196401 (in Chinese) [任群, 王楠, 张莉, 王建元, 郑亚萍, 姚文静 2012 物理学报 61 196401]

    [20]

    Fang T, Wang L, Peng C X, Qi Y 2012 J. Phys.: Condens. Matter 24 505103

    [21]

    Cao Z D, Georg P G 2005 Chin. Phys. Lett. 22 482

    [22]

    Wang C P, Shi R P, Liu J X, Wang Y, Kainuma R, Ishida K 2002 Science 297 990

    [23]

    Bhatia A B, Thornton D E 1970 Phys. Rev. B 2 3004

    [24]

    Faber T E, Ziman J M 1965 Phil. Mag. 11 153

    [25]

    Griesche A, Horbach J, Das S K 2007 Phys. Rev. B 75 174304

    [26]

    Binder K, Das S K, Hobrach J, Parlee N A D 2006 J. Chem. Phys. 125 024506

  • [1]

    Li D, Robinson M B, Rathz T J, Williams G 1998 Mater. Lett. 36 152

    [2]

    Ojha S N, Chaitonuinfay K 1978 Trans. Indian Inst. Metals 31 208

    [3]

    Koch C C 1995 Mater. Trans. JIM 36 85

    [4]

    Ratke L, Diefenbach S 1995 Mater. Sci. Eng. R. 15 263

    [5]

    Schroenitz M, Dreizin E L 2003 J. Mater. Res. 18 1827

    [6]

    Islam F, Medraj M 2004 Proceedings of CSME Forum p921

    [7]

    Awe O E, Akinlade O, Hussain L A 2005 J. Alloys Compd. 387 256

    [8]

    Kuendig A 2004 Acta Mater. 52 2441

    [9]

    Sohn S W, Yook W, Kim W T, Kim D H 2012 Intermetallics 23 57

    [10]

    Cahn J W, Hilliard J E 1959 J. Chem. Phys. 31 539

    [11]

    Cahn J W, Hilliard J E 1959 J. Chem. Phys. 31 688

    [12]

    Siggia E D 1979 Phys. Rev. A 20 595

    [13]

    Aarts D G A L, Schmidt M, Lekkerkerker H N W 2004 Science 304 847

    [14]

    Gunton J D, Miguel M S, Sahni P S 1983 Phase Transitions and Critical Phenomena (London: Academic Press) p269

    [15]

    Bhat S, Tuninier R, Schurtenberger P 2006 J. Phys. Condens. Matter 18 L339

    [16]

    Bates F S, Wiltzius P 1989 J. Chem. Phys. 91 3258

    [17]

    Bailey A E, Poon W C K, Christianson R J, Schofied A B, Gasser U, Prasad V, Manley S, Segre P N, Cipelletti L, Meyer W V, Doherty Mp, Sankaran S, Jankovsky A L, Shiley W L, Bowen J P, Eggers J C, Kurta C, Lorik Jr T, Pusey P N, Weitz D A 2007 Phys. Rev. Lett. 99 205701

    [18]

    Tanaka H 1995 Phys. Rev. E 51 1313

    [19]

    Ren Q, Wang N, Zhang L, Wang J Y, Zheng Y P, Yao W J 2012 Acta Phys. Sin. 61 196401 (in Chinese) [任群, 王楠, 张莉, 王建元, 郑亚萍, 姚文静 2012 物理学报 61 196401]

    [20]

    Fang T, Wang L, Peng C X, Qi Y 2012 J. Phys.: Condens. Matter 24 505103

    [21]

    Cao Z D, Georg P G 2005 Chin. Phys. Lett. 22 482

    [22]

    Wang C P, Shi R P, Liu J X, Wang Y, Kainuma R, Ishida K 2002 Science 297 990

    [23]

    Bhatia A B, Thornton D E 1970 Phys. Rev. B 2 3004

    [24]

    Faber T E, Ziman J M 1965 Phil. Mag. 11 153

    [25]

    Griesche A, Horbach J, Das S K 2007 Phys. Rev. B 75 174304

    [26]

    Binder K, Das S K, Hobrach J, Parlee N A D 2006 J. Chem. Phys. 125 024506

  • [1] 郭灿, 赵玉平, 邓英远, 张忠明, 徐春杰. 运动晶界与调幅分解相互作用过程的相场法研究. 物理学报, 2022, 71(7): 078101. doi: 10.7498/aps.71.20211973
    [2] 潘伶, 张昊, 林国斌. 纳米液滴撞击柱状固体表面动态行为的分子动力学模拟. 物理学报, 2021, 70(13): 134704. doi: 10.7498/aps.70.20210094
    [3] 韦国翠, 田泽安. 不同尺寸Cu64Zr36纳米液滴的快速凝固过程分子动力学模拟. 物理学报, 2021, 70(24): 246401. doi: 10.7498/aps.70.20211235
    [4] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响. 物理学报, 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [5] 徐威, 兰忠, 彭本利, 温荣福, 马学虎. 微液滴在不同能量表面上润湿状态的分子动力学模拟. 物理学报, 2015, 64(21): 216801. doi: 10.7498/aps.64.216801
    [6] 何昱辰, 刘向军. 基于基液连续假设的大体系Cu-H2O纳米流体输运特性的模拟研究. 物理学报, 2015, 64(19): 196601. doi: 10.7498/aps.64.196601
    [7] 坚增运, 高阿红, 常芳娥, 唐博博, 张龙, 李娜. Ni熔体凝固过程中临界晶核和亚临界晶核的分子动力学模拟. 物理学报, 2013, 62(5): 056102. doi: 10.7498/aps.62.056102
    [8] 陈青, 孙民华. 分子动力学模拟尺寸对纳米Cu颗粒等温晶化过程的影响. 物理学报, 2013, 62(3): 036101. doi: 10.7498/aps.62.036101
    [9] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [10] 郑小青, 杨洋, 孙得彦. 模型二元有序合金固液界面结构的分子动力学研究. 物理学报, 2013, 62(1): 017101. doi: 10.7498/aps.62.017101
    [11] 张英杰, 肖绪洋, 李永强, 颜云辉. 分子动力学模拟Cu(010)基体对负载Co-Cu双金属团簇熔化过程的影响. 物理学报, 2012, 61(9): 093602. doi: 10.7498/aps.61.093602
    [12] 任群, 王楠, 张莉, 王建元, 郑亚萍, 姚文静. 调幅分解及形核对相分离作用机理研究 . 物理学报, 2012, 61(19): 196401. doi: 10.7498/aps.61.196401
    [13] 张琪, 王锦程, 张亚丛, 杨根仓. 多晶凝固及后续调幅分解过程的晶体相场法模拟. 物理学报, 2011, 60(8): 088104. doi: 10.7498/aps.60.088104
    [14] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟. 物理学报, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [15] 孟丽娟, 李融武, 刘绍军, 孙俊东. 异质原子在Cu(001)表面扩散的分子动力学模拟. 物理学报, 2009, 58(4): 2637-2643. doi: 10.7498/aps.58.2637
    [16] 颜克凤, 李小森, 陈朝阳, 李 刚, 唐良广, 樊栓狮. 用分子动力学模拟甲烷水合物热激法分解. 物理学报, 2007, 56(8): 4994-5002. doi: 10.7498/aps.56.4994
    [17] 颜克凤, 李小森, 陈朝阳, 李 刚, 李志宝. 用分子动力学模拟甲烷水合物热激法结合化学试剂法分解. 物理学报, 2007, 56(11): 6727-6735. doi: 10.7498/aps.56.6727
    [18] 杨 弘, 陈 民. 深过冷液态Ni2TiAl合金热物理性质的分子动力学模拟. 物理学报, 2006, 55(5): 2418-2421. doi: 10.7498/aps.55.2418
    [19] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对矫顽力的影响. 物理学报, 2005, 54(9): 4389-4394. doi: 10.7498/aps.54.4389
    [20] 李 腾, 李 卫, 潘 伟, 李岫梅. Fe40—45Cr30—35Co20—25Mo0—4Zr0—2合金微观结构对力学性能的影响. 物理学报, 2005, 54(9): 4395-4399. doi: 10.7498/aps.54.4395
计量
  • 文章访问数:  3549
  • PDF下载量:  534
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-12
  • 修回日期:  2013-11-10
  • 刊出日期:  2014-02-05

Fe50Cu50合金熔体相分离过程的分子动力学模拟

  • 1. 山东大学(威海)机电与信息工程学院, 威海 264209
    基金项目: 国家自然科学基金(批准号:51371108)和山东大学(威海)研究生科研创新基金(批准号:yjs12032)资助的课题.

摘要: 基于镶嵌原子势,采用分子动力学模拟的方法探讨了Fe50Cu50合金熔体在1823 K下液-液相分离过程. 结果发现: 熔体中同类原子配位数随弛豫时间的延长逐渐增大,而异类原子配位数逐渐减少;由Bhatia-Thornton结构因子SCC(q)获得的相关长度随时间的变化也呈现出明显的递增趋势,表明该合金熔体在该温度下发生了液–液相分离. 原子轨迹的可视化显示结果发现,相分离的初期,体系呈明显的网络状组织,随时间的延长,异类原子逐渐分离,最终形成富Fe和富Cu的相分离组织,符合调幅分解特征. 与Fe75Cu25合金熔体的相分离过程对比发现,Fe与Cu原子数目相差越小,相分离行为越剧烈,形成稳定分层结构所需的时间越短. 以上研究从原子尺度上表征了金属熔体的相分离过程.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回