搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电感电流伪连续模式下Boost变换器的分数阶建模与分析

谭程 梁志珊

引用本文:
Citation:

电感电流伪连续模式下Boost变换器的分数阶建模与分析

谭程, 梁志珊

Modeling and simulation analysis of fractional-order Boost converter in pseudo-continuous conduction mode

Tan Cheng, Liang Zhi-Shan
PDF
导出引用
  • 基于电感和电容本质上是分数阶的事实,采用分数阶微积分理论建立了电感电流伪连续模式下Boost变换器的区间分数阶数学模型. 依据状态平均建模方法,建立了Boost变换器工作于电感电流伪连续模式下的分数阶状态平均模型. 通过所建的分数阶数学模型对其电感电流和输出电压进行了理论分析以及传递函数的推导,并比较了与整数阶数学模型的区别. 根据改进的Oustaloup分数阶微积分滤波器近似算法,采用电感和电容的等效分数阶电路模型,在Matlab/Simulink的仿真环境下,对其数学模型和电路模型进行了仿真对比,分析了模型误差产生的原因,验证了所建的分数阶数学模型以及对其理论分析的正确性. 最后,指出了分数阶Boost变换器工作于电感电流伪连续模式与连续模式、断续模式的区别与联系.
    Based on the fact that the inductor and the capacitor are fractional in nature, the fractional order mathematical model of the Boost converter in pseudo-continuous conduction mode is established by using fractional order calculus theory. According to the state average modeling method, the fractional order state average model of Boost converter in pseudo-continuous conduction mode is built. In view of the mathematical model, the inductor current and the output voltage are analyzed and the transfer functions are derived. Then the differences between the integer order and the fractional order mathematical models are analyzed. On the basis of the improved Oustaloup fractional order calculus for filter approximation algorithm and the model of fractional order inductance and capacitance, the simulation results have been compared between the mathematical model and circuit model with Matlab/Simulink software; the origins of model error are analyzed and the correctness of the modeling in fractional order and the theoretical analysis is verified. Finally, the differences and the relations of Boost converter among the continuous conduction mode, the discontinuous conduction mode, and the pseudo-continuous conduction mode are indicated.
    • 基金项目: 国家自然科学基金(批准号:51071176)和中国石油大学(北京)前瞻导向基金(批准号:2010QZ03)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51071176), and the China University of Petroleum(Beijing) Frontier Foundation (Grant No. 2010QZ03).
    [1]

    Yang S P, Zhang R X 2008 Acta Phys. Sin. 57 6837 (in Chinese)[杨世平, 张若洵2008 物理学报57 6837]

    [2]

    Zhang C F, Gao J F, Xu L 2007 Acta Phys. Sin. 56 5124 (in Chinese)[张成芬, 高金峰, 徐磊2007 物理学报56 5124]

    [3]

    Li C L, Yu S M, Luo X S 2012 Chin. Phys. B 21 172

    [4]

    Kenneth S M, Bertram R 1993 An Introduction to the Fractional Calculus and Fractiona Differential Equations (New Jersey: John Wiley & Sons) p21

    [5]

    Shockooh A, Suarez L 1999 Journal of Viberation and Control. 5 331

    [6]

    Bohannan G W 2002 Proceedings of the 41st IEEE International Conference on Decision and Control, Tutorial Workshop 2:Fractional Calculus Applications in Automatic Control and Robotics Las Vegas, USA, December 10-13, 2002 p1

    [7]

    Westerlund S, Ekstam L 1994 IEEE Trans. Dielectr. Electr. Insulat. 1 826

    [8]

    Westerlund S 2002 Dead matter has memory (Kalmar, Sweden: Causal Consulting)chapt. 7

    [9]

    Ahmad W 2003 Proceedings of the 2003 International Symposium on Circuits and Systems Bangkok, Thailand, May 25-28, 2003 3 p5

    [10]

    Martinez R, Bolea Y, Grau A, Martinez H 2009 IEEE Conference on Emerging Technologies & Factory Automation Palma de Mallorca, Spain, September 22-25, 2009 p1

    [11]

    Wang F Q, Ma X K 2011 Acta Phys. Sin. 60 070506 (in Chinese)[王发强, 马西奎2011 物理学报60 070506]

    [12]

    Wang F Q, Ma X K 2013 Scientia Sinica Technological. 43 368 (in Chinese)[王发强, 马西奎2013 中国科学: 43 368]

    [13]

    Ma D S, Ki W H 2007 IEEE Trans. Circuit and Systtems Ⅱ: Express Briefs. 54 825

    [14]

    Kanakasabai V, Ramesh O, Dipti S 2002 IEEE Trans. Power Electronics. 17 677

    [15]

    Podlubny I 1999 Fractional differential equations (New York: Academic Press) chapt 1-2,4

    [16]

    Yu H K 2010 M. S. Thesis. (Sichuan: Southeast Jiaotong University) (in Chinese) [于海坤2010 硕士学位论文 (四川: 西南交通大学)]

    [17]

    Wang F Q, Ma X K 2013 Chin. Phys. B 22 236

    [18]

    Xue D Y, Chen Y Q 2007 MATLAB Solutions to Mathematical Problems in Control (Beijing: Tsinghua University Press) p435 (in Chinese) [薛定宇, 陈阳泉2007 控制数学问题的MATLAB 求解(北京: 清华大学出版社) 第 435 页]

    [19]

    Cao W S, Yang Y X 2007 Journal of System Simulation. 19 1329 (in Chinese) [曹文思, 杨育霞2007 系统仿真学报 19 1329]

  • [1]

    Yang S P, Zhang R X 2008 Acta Phys. Sin. 57 6837 (in Chinese)[杨世平, 张若洵2008 物理学报57 6837]

    [2]

    Zhang C F, Gao J F, Xu L 2007 Acta Phys. Sin. 56 5124 (in Chinese)[张成芬, 高金峰, 徐磊2007 物理学报56 5124]

    [3]

    Li C L, Yu S M, Luo X S 2012 Chin. Phys. B 21 172

    [4]

    Kenneth S M, Bertram R 1993 An Introduction to the Fractional Calculus and Fractiona Differential Equations (New Jersey: John Wiley & Sons) p21

    [5]

    Shockooh A, Suarez L 1999 Journal of Viberation and Control. 5 331

    [6]

    Bohannan G W 2002 Proceedings of the 41st IEEE International Conference on Decision and Control, Tutorial Workshop 2:Fractional Calculus Applications in Automatic Control and Robotics Las Vegas, USA, December 10-13, 2002 p1

    [7]

    Westerlund S, Ekstam L 1994 IEEE Trans. Dielectr. Electr. Insulat. 1 826

    [8]

    Westerlund S 2002 Dead matter has memory (Kalmar, Sweden: Causal Consulting)chapt. 7

    [9]

    Ahmad W 2003 Proceedings of the 2003 International Symposium on Circuits and Systems Bangkok, Thailand, May 25-28, 2003 3 p5

    [10]

    Martinez R, Bolea Y, Grau A, Martinez H 2009 IEEE Conference on Emerging Technologies & Factory Automation Palma de Mallorca, Spain, September 22-25, 2009 p1

    [11]

    Wang F Q, Ma X K 2011 Acta Phys. Sin. 60 070506 (in Chinese)[王发强, 马西奎2011 物理学报60 070506]

    [12]

    Wang F Q, Ma X K 2013 Scientia Sinica Technological. 43 368 (in Chinese)[王发强, 马西奎2013 中国科学: 43 368]

    [13]

    Ma D S, Ki W H 2007 IEEE Trans. Circuit and Systtems Ⅱ: Express Briefs. 54 825

    [14]

    Kanakasabai V, Ramesh O, Dipti S 2002 IEEE Trans. Power Electronics. 17 677

    [15]

    Podlubny I 1999 Fractional differential equations (New York: Academic Press) chapt 1-2,4

    [16]

    Yu H K 2010 M. S. Thesis. (Sichuan: Southeast Jiaotong University) (in Chinese) [于海坤2010 硕士学位论文 (四川: 西南交通大学)]

    [17]

    Wang F Q, Ma X K 2013 Chin. Phys. B 22 236

    [18]

    Xue D Y, Chen Y Q 2007 MATLAB Solutions to Mathematical Problems in Control (Beijing: Tsinghua University Press) p435 (in Chinese) [薛定宇, 陈阳泉2007 控制数学问题的MATLAB 求解(北京: 清华大学出版社) 第 435 页]

    [19]

    Cao W S, Yang Y X 2007 Journal of System Simulation. 19 1329 (in Chinese) [曹文思, 杨育霞2007 系统仿真学报 19 1329]

  • [1] 程秋虎, 王石语, 过振, 蔡德芳, 李兵斌. 超高斯光束抽运调Q固体激光器仿真模型研究. 物理学报, 2017, 66(18): 180204. doi: 10.7498/aps.66.180204
    [2] 徐天鸿, 姚辰, 万文坚, 朱永浩, 曹俊诚. 锥形太赫兹量子级联激光器输出功率与光束特性研究. 物理学报, 2015, 64(22): 224212. doi: 10.7498/aps.64.224212
    [3] 张方樱, 胡维, 陈新兵, 陈虹, 唐雄民. 基于状态关联性的Boost变换器混沌与反混沌控制. 物理学报, 2015, 64(4): 048401. doi: 10.7498/aps.64.048401
    [4] 刘式达, 付遵涛, 刘式适. 间歇湍流的分数阶动力学. 物理学报, 2014, 63(7): 074701. doi: 10.7498/aps.63.074701
    [5] 何圣仲, 周国华, 许建平, 吴松荣, 阎铁生, 张希. 谷值V2控制Boost变换器的精确建模与动力学分析. 物理学报, 2014, 63(17): 170503. doi: 10.7498/aps.63.170503
    [6] 谭程, 梁志珊, 张举丘. 电感电流伪连续模式下分数阶Boost变换器的非线性控制. 物理学报, 2014, 63(20): 200502. doi: 10.7498/aps.63.200502
    [7] 张华, 吴建军, 张代贤, 张锐, 何振. 用于脉冲等离子体推力器烧蚀过程仿真的新型机电模型. 物理学报, 2013, 62(21): 210202. doi: 10.7498/aps.62.210202
    [8] 谢玲玲, 龚仁喜, 卓浩泽, 马献花. 电压模式控制不连续传导模式boost变换器切分岔研究. 物理学报, 2012, 61(5): 058401. doi: 10.7498/aps.61.058401
    [9] 孙棣华, 田川. 考虑驾驶员预估效应的交通流格子模型与数值仿真. 物理学报, 2011, 60(6): 068901. doi: 10.7498/aps.60.068901
    [10] 程为彬, 康思民, 汪跃龙, 汤楠, 郭颖娜, 霍爱清. 功率因数校正Boost变换器中快时标不稳定的形成与参数动态共振. 物理学报, 2011, 60(2): 020506. doi: 10.7498/aps.60.020506
    [11] 马伟, 王明渝, 聂海龙. 单周期控制Boost变换器Hopf分岔控制及电路实现. 物理学报, 2011, 60(10): 100202. doi: 10.7498/aps.60.100202
    [12] 王发强, 马西奎. 电感电流连续模式下Boost变换器的分数阶建模与仿真分析. 物理学报, 2011, 60(7): 070506. doi: 10.7498/aps.60.070506
    [13] 乔晓华, 包伯成. 三维四翼广义增广Lü系统. 物理学报, 2009, 58(12): 8152-8159. doi: 10.7498/aps.58.8152
    [14] 包伯成, 许建平, 刘中. 具有两个边界的Boost变换器分岔行为和斜坡补偿的镇定控制. 物理学报, 2009, 58(5): 2949-2956. doi: 10.7498/aps.58.2949
    [15] 程为彬, 郭颖娜, 康思民, 汪跃龙, 霍爱清, 汤楠. Boost变换器中参数斜坡共振控制能力研究. 物理学报, 2009, 58(7): 4439-4448. doi: 10.7498/aps.58.4439
    [16] 张若洵, 杨世平. 分数阶共轭Chen混沌系统中的混沌及其电路实验仿真. 物理学报, 2009, 58(5): 2957-2962. doi: 10.7498/aps.58.2957
    [17] 王发强, 张 浩, 马西奎. 单周期控制Boost变换器中的低频波动现象分析. 物理学报, 2008, 57(3): 1522-1528. doi: 10.7498/aps.57.1522
    [18] 陈向荣, 刘崇新, 李永勋. 基于非线性观测器的一类分数阶混沌系统完全状态投影同步. 物理学报, 2008, 57(3): 1453-1457. doi: 10.7498/aps.57.1453
    [19] 卢伟国, 周雒维, 罗全明, 杜 雄. BOOST变换器延迟反馈混沌控制及其优化. 物理学报, 2007, 56(11): 6275-6281. doi: 10.7498/aps.56.6275
    [20] 周宇飞, 陈军宁, 谢智刚, 柯导明, 时龙兴, 孙伟锋. 参数共振微扰法在Boost变换器混沌控制中的实现及其优化. 物理学报, 2004, 53(11): 3676-3683. doi: 10.7498/aps.53.3676
计量
  • 文章访问数:  3941
  • PDF下载量:  1222
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-18
  • 修回日期:  2013-12-23
  • 刊出日期:  2014-04-05

电感电流伪连续模式下Boost变换器的分数阶建模与分析

  • 1. 中国石油大学(北京), 地球物理与信息工程学院, 北京 102249
    基金项目: 国家自然科学基金(批准号:51071176)和中国石油大学(北京)前瞻导向基金(批准号:2010QZ03)资助的课题.

摘要: 基于电感和电容本质上是分数阶的事实,采用分数阶微积分理论建立了电感电流伪连续模式下Boost变换器的区间分数阶数学模型. 依据状态平均建模方法,建立了Boost变换器工作于电感电流伪连续模式下的分数阶状态平均模型. 通过所建的分数阶数学模型对其电感电流和输出电压进行了理论分析以及传递函数的推导,并比较了与整数阶数学模型的区别. 根据改进的Oustaloup分数阶微积分滤波器近似算法,采用电感和电容的等效分数阶电路模型,在Matlab/Simulink的仿真环境下,对其数学模型和电路模型进行了仿真对比,分析了模型误差产生的原因,验证了所建的分数阶数学模型以及对其理论分析的正确性. 最后,指出了分数阶Boost变换器工作于电感电流伪连续模式与连续模式、断续模式的区别与联系.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回