搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶粒细化对MgB2超导临界电流密度的作用

郭志超 李平林

引用本文:
Citation:

晶粒细化对MgB2超导临界电流密度的作用

郭志超, 李平林

Grain refinement influence on the critical current density of the MgB2 superconductor sample

Guo Zhi-Chao, Li Ping-Lin
PDF
导出引用
  • 在多晶系统的MgB2超导体中存在晶粒间较小的整体电流和晶粒内大的局域电流. 用改变升温速率的方法制备了不同晶粒大小和晶粒连接性的MgB2样品,并对它们的晶粒大小进行了统计. 采用一种测量超导临界电流密度的Campbell法,分别测量和计算得到了它们的整体电流和局域电流密度. 研究表明:长时间的烧结造成晶粒变大,材料有较大的整体临界电流密度,而短时间烧结的样品则相反;同时发现晶粒细化只提高了样品的局域临界电流密度,而且样品内部缺陷、杂质及晶界等因素是影响MgB2超导体整体电流传输的主要因素.
    There exist two kinds of critical current densities in polycrystalline bulk of MgB2, i.e., the large local critical current density corresponding to the shielding current in inductive measurements, which flows inside the grains, and the small global critical current density that flows through the grains for whole sample. This behavior is considered to be mainly caused by the significant granularity in polycrystalline bulk. In this work, MgB2 superconductors are prepared under different Spark plasma sintering (SPS) heating rates. The microstructures of the samples are investigated, and their critical current densities are measured by Campbell method from the penetrating AC flux profile and the AC magnetic field versus penetration depth. It is found that an extremely high global critical current flows through the whole sample with a bigger grain size, which is prepared by a low heating rate during SPS sintering. That is to say, the grain refinement only increases the local critical current density of the sample. These results imply that the global current is reduced due to the existence of various defects and the poor electrical connectivity in MgB2 sample.
    • 基金项目: 郑州大学博士后基金和国家自然科学基金(批准号:50771003,50802004)资助的课题.
    • Funds: Project supported by the Postdoctoral Science Foundation of Zhengzhou University and National Natural Science Foundation of China (Grant Nos. 50771003, 50802004).
    [1]

    Source W 2011 Superconductivity, BCS Theory, John Bardeen, Meissner Effect, Technological Applications of Superconductivity (Washington DC: Original Publisher) pp11–23

    [2]

    Government U S 2011 High Temperature Superconductivity in Perspective (Washington DC: Original Publisher) pp81–93

    [3]

    Thomas M L, Beena K, Hyunsoo K 2012 Physica C 483 91

    [4]

    Muller K H, Andrikidis C, Liu H K 1994 Phys. Rev. B 50 10218

    [5]

    Teruo M 2007 Flux Pinning in Superconductors (Berlin: Springer-Verlag) pp221–350

    [6]

    Baorong N, Zhiyong L, Yoshihiro M 2008 Physics C 468 1443

    [7]

    Guo Z C, Suo H L, Liu Z Y, Liu M, Ma L 2012 Acta Phys. Sin. 61 177401 (in Chinese) [郭志超, 索红莉, 刘志勇, 刘敏, 马麟 2012 物理学报 61 177401]

    [8]

    Otabe E S, Kiuchi M, Kawai S 2009 Physica C 469 1940

    [9]

    Ni B, Ge J, Yuri T, Edmund S O 2011 IEEE Trans. Appl. Supercond. 21 2862

    [10]

    Ma Z, Liu Y, Cai Q 2012 Nanoscale 4 2060

    [11]

    Kovac P, Husek I, Kulich M 2010 Physica C 470 340

    [12]

    Malagoli A, Braccini V, Bernini C 2010 Supercond. Sci. Technol. 23 2

    [13]

    Takahashi M, Okada M, Nakane T 2009 Supercond. Sci. Technol. 22 12

    [14]

    Kim D H, Hwang T J, Cha Y J 2009 Physica C 469 1059

    [15]

    Ahn J H, Oh S 2009 Physica C 469 1235

    [16]

    Aldica G, Batalu D, Popa S 2012 Physica C 477 43

  • [1]

    Source W 2011 Superconductivity, BCS Theory, John Bardeen, Meissner Effect, Technological Applications of Superconductivity (Washington DC: Original Publisher) pp11–23

    [2]

    Government U S 2011 High Temperature Superconductivity in Perspective (Washington DC: Original Publisher) pp81–93

    [3]

    Thomas M L, Beena K, Hyunsoo K 2012 Physica C 483 91

    [4]

    Muller K H, Andrikidis C, Liu H K 1994 Phys. Rev. B 50 10218

    [5]

    Teruo M 2007 Flux Pinning in Superconductors (Berlin: Springer-Verlag) pp221–350

    [6]

    Baorong N, Zhiyong L, Yoshihiro M 2008 Physics C 468 1443

    [7]

    Guo Z C, Suo H L, Liu Z Y, Liu M, Ma L 2012 Acta Phys. Sin. 61 177401 (in Chinese) [郭志超, 索红莉, 刘志勇, 刘敏, 马麟 2012 物理学报 61 177401]

    [8]

    Otabe E S, Kiuchi M, Kawai S 2009 Physica C 469 1940

    [9]

    Ni B, Ge J, Yuri T, Edmund S O 2011 IEEE Trans. Appl. Supercond. 21 2862

    [10]

    Ma Z, Liu Y, Cai Q 2012 Nanoscale 4 2060

    [11]

    Kovac P, Husek I, Kulich M 2010 Physica C 470 340

    [12]

    Malagoli A, Braccini V, Bernini C 2010 Supercond. Sci. Technol. 23 2

    [13]

    Takahashi M, Okada M, Nakane T 2009 Supercond. Sci. Technol. 22 12

    [14]

    Kim D H, Hwang T J, Cha Y J 2009 Physica C 469 1059

    [15]

    Ahn J H, Oh S 2009 Physica C 469 1235

    [16]

    Aldica G, Batalu D, Popa S 2012 Physica C 477 43

  • [1] 程鹏, 杨育梅. 临界电流密度对圆柱状超导体力学特性的影响. 物理学报, 2019, 68(18): 187402. doi: 10.7498/aps.68.20190759
    [2] 管仁国, 赵占勇, 黄红乾, 连超, 钞润泽, 刘春明. 冷却倾斜板熔体处理过程边界层分布及流动传热的理论研究. 物理学报, 2012, 61(20): 206602. doi: 10.7498/aps.61.206602
    [3] 郭志超, 索红莉, 刘志勇, 刘敏, 马麟. SQUID法和Campbell法测量超导材料的研究. 物理学报, 2012, 61(17): 177401. doi: 10.7498/aps.61.177401
    [4] 孙辉辉, 杨烨, 王磊, Cheng C. H., 冯勇, 赵勇. 柠檬酸掺杂的MgB2超导体钉扎机理的研究. 物理学报, 2010, 59(5): 3488-3493. doi: 10.7498/aps.59.3488
    [5] 刘贵立. Mg合金晶粒细化机理的电子理论研究. 物理学报, 2009, 58(5): 3319-3323. doi: 10.7498/aps.58.3319
    [6] 刘贵立. Mg-Zr合金微观组织电子结构研究. 物理学报, 2008, 57(2): 1043-1047. doi: 10.7498/aps.57.1043
    [7] 陈荣华, 朱明原, 李 瑛, 李文献, 金红明, 窦士学. 脉冲磁场处理对碳纳米管掺杂MgB2线材临界电流密度的影响. 物理学报, 2006, 55(9): 4878-4882. doi: 10.7498/aps.55.4878
    [8] 王淑芳, B. B. Jin, 刘 震, 周岳亮, 陈正豪, 吕惠宾, 程波林, 杨国桢. MgB2超导薄膜的微波测量. 物理学报, 2005, 54(5): 2325-2328. doi: 10.7498/aps.54.2325
    [9] 张国英, 张 辉, 刘春明, 周永军. 钢铁材料中形变诱导相变超细化机理研究. 物理学报, 2005, 54(4): 1771-1776. doi: 10.7498/aps.54.1771
    [10] 杨东升, 吴柏枚, 李 波, 郑卫华, 李世燕, 樊 荣, 陈仙辉, 曹烈兆. 双能隙超导体MgB2的热导. 物理学报, 2003, 52(3): 683-686. doi: 10.7498/aps.52.683
    [11] 吴柏枚, 李 波, 杨东升, 郑卫华, 李世燕, 曹烈兆, 陈仙辉. 新型超导体MgB2和MgCNi3热、电输运性质研究. 物理学报, 2003, 52(12): 3150-3154. doi: 10.7498/aps.52.3150
    [12] 王淑芳, 朱亚斌, 张 芹, 刘 震, 周岳亮, 陈正豪, 吕惠宾, 杨国桢. 利用电泳法在金属基底上制备MgB2超导厚膜. 物理学报, 2003, 52(6): 1505-1508. doi: 10.7498/aps.52.1505
    [13] 欧阳世根, 关毅, 佘卫龙. 旋转超导体中的电流与电磁场. 物理学报, 2002, 51(7): 1596-1599. doi: 10.7498/aps.51.1596
    [14] 李晓薇, 董正超, 崔元顺. s波超导体绝缘层dx2-y2波超导体结的直流Josephson电流. 物理学报, 2002, 51(6): 1360-1365. doi: 10.7498/aps.51.1360
    [15] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [16] 杨宏顺, 余旻, 李世燕, 李鹏程, 柴一晟, 章良, 陈仙辉, 曹烈兆. 新型超导体MgB2的热电势和电阻率研究. 物理学报, 2001, 50(6): 1197-1200. doi: 10.7498/aps.50.1197
    [17] 谭明秋, 陶向明. 高温超导体MgB2的电子结构研究. 物理学报, 2001, 50(6): 1193-1196. doi: 10.7498/aps.50.1193
    [18] 赵勇, 诸葛向彬, 何业冶. 典型颗粒超导体YBa2Cu3O7/V2O5中临界电流随温度变化的特性. 物理学报, 1994, 43(10): 1693-1703. doi: 10.7498/aps.43.1693
    [19] 冯勇, 周廉. 粉末熔化法(YHo)Ba2Cu3O7-y超导体的性能与微结构. 物理学报, 1992, 41(11): 1880-1883. doi: 10.7498/aps.41.1880
    [20] 吴自勤, 高巧君, 唐先德. Nb3Sn复合超导体晶粒生长机制. 物理学报, 1981, 30(3): 428-432. doi: 10.7498/aps.30.428
计量
  • 文章访问数:  3574
  • PDF下载量:  373
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-14
  • 修回日期:  2013-12-25
  • 刊出日期:  2014-03-05

晶粒细化对MgB2超导临界电流密度的作用

  • 1. 郑州大学物理工程学院, 河南省量子功能材料国际联合实验室, 郑州 450001
    基金项目: 郑州大学博士后基金和国家自然科学基金(批准号:50771003,50802004)资助的课题.

摘要: 在多晶系统的MgB2超导体中存在晶粒间较小的整体电流和晶粒内大的局域电流. 用改变升温速率的方法制备了不同晶粒大小和晶粒连接性的MgB2样品,并对它们的晶粒大小进行了统计. 采用一种测量超导临界电流密度的Campbell法,分别测量和计算得到了它们的整体电流和局域电流密度. 研究表明:长时间的烧结造成晶粒变大,材料有较大的整体临界电流密度,而短时间烧结的样品则相反;同时发现晶粒细化只提高了样品的局域临界电流密度,而且样品内部缺陷、杂质及晶界等因素是影响MgB2超导体整体电流传输的主要因素.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回