搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Al-Cu-Ge合金的热物理性质与快速凝固规律研究

王小娟 阮莹 洪振宇

引用本文:
Citation:

Al-Cu-Ge合金的热物理性质与快速凝固规律研究

王小娟, 阮莹, 洪振宇

Thermophysical properties and rapid solidification of Al-Cu-Ge alloys

Wang Xiao-Juan, Ruan Ying, Hong Zhen-Yu
PDF
导出引用
  • Al-Cu-Ge合金是典型的三元共晶体系,在工业上有重要的应用价值,对其进行研究有助于了解该合金的热物理性质和提高该合金的结构性能. 本文选择了Al55Cu10Ge35,Al70Cu10Ge20和Al80Cu10Ge10三种成分合金作为研究对象,对合金的固态比热和热膨胀系数进行了测量,并对比分析了合金在近平衡凝固和落管快速凝固条件下的组织特征和凝固路径. 研究发现,合金比热随Al含量的增大和Ge含量的减少而增大. 这三种成分合金的软化温度均为666 K,物理热膨胀系数α在370–650 K温度范围内基本一致,约为1.5×10-5 K-1. 近平衡凝固条件下合金凝固过程中最后一步反应生成的均为(Al)+(Ge)二相共晶而不是三元共晶,这表明(Al)、(Ge)和CuAl2相在这三种成分的Al-Cu-Ge合金中难以同时形核并协同生长. 然而,在快速凝固条件下,初生相的形核和生成受到抑制,合金中更易于形成二相共晶和三元共晶组织.
    Al-Cu-Ge alloy system, a typical ternary eutectic alloy system, has been used widely in the industries. Our research is helpful for better understanding its thermophysical properties and improving its structural performance. In this paper, the specific heat values and thermal expansion coefficients of Al55Cu10Ge35, Al70Cu10Ge20 and Al80Cu10Ge10 alloys are investigated. The microstructural characteristics and the solidification paths of these alloys under near-equilibrium solidification and rapid solidification conditions are studied comparatively. Their specific heat values increase as Al content increases and Ge content decreases. The softening temperature is 666 K, and the thermal expansion coefficient fluctuates around 1.5×10-5 K-1 in the temperature range of 370–650 K. Under a near-equilibrium solidification condition, the last formation microstructure is (Al)+(Ge) pseudobinary eutectic instead of ternary eutectic. This means that (Al), (Ge), and CuAl2 phases are difficult to nucleate simultaneously or grow cooperatively. In comparison, during rapid solidification, the nucleation of primary phase is depressed, pseudobinary eutectic and ternary eutectic are much easier to form in these alloys.
    • 基金项目: 国家自然科学基金(批准号:11104223和51001087)、西北工业大学基础研究基金(批准号:JC201157)和西北工业大学翱翔人才计划资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104223, 51001087), the NPU Foundation for Fundamental Research, China (Grant No. JC201157), and the NPU Excellent Personnel Supporting Project of Aoxiang Star.
    [1]

    Sun J Q, Zhong R P 2007 Ptca(Part: A Phys. Test.) 43 112 (in Chinese) [孙建强, 钟润萍 2007 理化检验-物理分册 43 112]

    [2]

    Yan J, Shan L, Luo Q, Wang W H, Wen H H 2009 Chin. Phys. B 18 704

    [3]

    Wu M M, Peng J, Cheng Y Z, Xiao X L, Chen D F, Hu Z B 2013 J. Alloys Compd. 577 295

    [4]

    Rudajevová A 2007 J. Alloys Compd. 430 153

    [5]

    Wang B L, Mai Y W, Zhang X H 2004 Acta Mater. 52 4961

    [6]

    Sayir A, Farmer S C 2000 Acta Mater. 48 4691

    [7]

    Shabestari S G, Moemeni H 2004 J. Mater. Process. Tech. 153 193

    [8]

    Luo A A, Fu P H, Peng L M, Kang X Y, Li Z Z, Zhu T Y 2011 Metall. Mater. Trans. A 43 360

    [9]

    Yan N, Wang W L, Dai F P, Wei B B 2011 Acta Phys. Sin. 60 036402 (in Chinese)[闫娜, 王伟丽, 代富平, 魏炳波 2011 物理学报 60 036402]

    [10]

    Ruan Y, Lu X Y 2012 J. Alloys Compd. 542 232

    [11]

    Pan X H, Hong Y, Jin W Q 2005 Chin. Phys. Lett. 11 2966

    [12]

    Yi X H, Liu R S, Tian Z A, Hou Z Y, Wang X, Zhou Q Y 2006 Acta Phys. Sin. 55 5386 (in Chinese) [易学华, 刘让苏, 田泽安, 侯兆阳, 王鑫, 周群益 2006 物理学报 55 5386]

    [13]

    Pan X H, Jin W Q, Liu Y, Ai F 2009 Chin. Phys. B 18 699

    [14]

    Qu M, Liu L, Zhao M 2010 International Conference on Advances in Materials and Manufacturing Processes ShenZhen, Peoples R China, November 6-8, 2010 p729

    [15]

    Xu R, Zhao H, Li J, Liu R, Wang W K 2006 Mater. Lett. 60 783

    [16]

    Anusionwu B C, Adebayo G A, Madu C A 2009 Appl. Phys. A 97 533

    [17]

    Kanibolotsky D S, Bieloborodova O V, Kotova N V, Lisnyak V V 2002 J. Therm. Anal. Calorim. 70 975

    [18]

    Zhou X 2011 Trans. Nonferrous Met. Soc. China 21 1513 (in Chinese) [周娴 2011 中国有色金属学报 21 1513]

    [19]

    Zhang X L, He D Y, Li X Y, Jiang J M 2009 Mater. Sci. Technol. 17 65 (in Chinese) [张晓丽, 贺定勇, 李晓延, 蒋建敏 2009 材料科学与工艺 17 65]

    [20]

    Stadnik Z M, Stroink G 1991 Phys. Rev. B 43 894

    [21]

    Kanibolotsky D S, Kotova N V, Bieloborodova O A, Lisnyak V V 2003 J. Chem. Therm. 35 1763

    [22]

    Villars P, Prince A, Okamoto H 1997 Ternary Alloy Phase Diagrams (2nd Ed.) (New York: ASM International) p3216

    [23]

    Brandes E A, Brook G B 1992 Smithells Metals Reference Book (7th Ed.) (Great Britain: Bath) pp8-41

    [24]

    Lee E, Ahn S 1994 Acta Metall. Mater. 42 3231

    [25]

    Dragnevski K, Cochrane R F, Mullis A M 2002 Phys. Rev. Lett. 89 215502

  • [1]

    Sun J Q, Zhong R P 2007 Ptca(Part: A Phys. Test.) 43 112 (in Chinese) [孙建强, 钟润萍 2007 理化检验-物理分册 43 112]

    [2]

    Yan J, Shan L, Luo Q, Wang W H, Wen H H 2009 Chin. Phys. B 18 704

    [3]

    Wu M M, Peng J, Cheng Y Z, Xiao X L, Chen D F, Hu Z B 2013 J. Alloys Compd. 577 295

    [4]

    Rudajevová A 2007 J. Alloys Compd. 430 153

    [5]

    Wang B L, Mai Y W, Zhang X H 2004 Acta Mater. 52 4961

    [6]

    Sayir A, Farmer S C 2000 Acta Mater. 48 4691

    [7]

    Shabestari S G, Moemeni H 2004 J. Mater. Process. Tech. 153 193

    [8]

    Luo A A, Fu P H, Peng L M, Kang X Y, Li Z Z, Zhu T Y 2011 Metall. Mater. Trans. A 43 360

    [9]

    Yan N, Wang W L, Dai F P, Wei B B 2011 Acta Phys. Sin. 60 036402 (in Chinese)[闫娜, 王伟丽, 代富平, 魏炳波 2011 物理学报 60 036402]

    [10]

    Ruan Y, Lu X Y 2012 J. Alloys Compd. 542 232

    [11]

    Pan X H, Hong Y, Jin W Q 2005 Chin. Phys. Lett. 11 2966

    [12]

    Yi X H, Liu R S, Tian Z A, Hou Z Y, Wang X, Zhou Q Y 2006 Acta Phys. Sin. 55 5386 (in Chinese) [易学华, 刘让苏, 田泽安, 侯兆阳, 王鑫, 周群益 2006 物理学报 55 5386]

    [13]

    Pan X H, Jin W Q, Liu Y, Ai F 2009 Chin. Phys. B 18 699

    [14]

    Qu M, Liu L, Zhao M 2010 International Conference on Advances in Materials and Manufacturing Processes ShenZhen, Peoples R China, November 6-8, 2010 p729

    [15]

    Xu R, Zhao H, Li J, Liu R, Wang W K 2006 Mater. Lett. 60 783

    [16]

    Anusionwu B C, Adebayo G A, Madu C A 2009 Appl. Phys. A 97 533

    [17]

    Kanibolotsky D S, Bieloborodova O V, Kotova N V, Lisnyak V V 2002 J. Therm. Anal. Calorim. 70 975

    [18]

    Zhou X 2011 Trans. Nonferrous Met. Soc. China 21 1513 (in Chinese) [周娴 2011 中国有色金属学报 21 1513]

    [19]

    Zhang X L, He D Y, Li X Y, Jiang J M 2009 Mater. Sci. Technol. 17 65 (in Chinese) [张晓丽, 贺定勇, 李晓延, 蒋建敏 2009 材料科学与工艺 17 65]

    [20]

    Stadnik Z M, Stroink G 1991 Phys. Rev. B 43 894

    [21]

    Kanibolotsky D S, Kotova N V, Bieloborodova O A, Lisnyak V V 2003 J. Chem. Therm. 35 1763

    [22]

    Villars P, Prince A, Okamoto H 1997 Ternary Alloy Phase Diagrams (2nd Ed.) (New York: ASM International) p3216

    [23]

    Brandes E A, Brook G B 1992 Smithells Metals Reference Book (7th Ed.) (Great Britain: Bath) pp8-41

    [24]

    Lee E, Ahn S 1994 Acta Metall. Mater. 42 3231

    [25]

    Dragnevski K, Cochrane R F, Mullis A M 2002 Phys. Rev. Lett. 89 215502

  • [1] 徐山森, 常健, 吴宇昊, 沙莎, 魏炳波. 液态五元Ni-Zr-Ti-Al-Cu合金快速凝固过程的高速摄影研究. 物理学报, 2019, 68(19): 196401. doi: 10.7498/aps.68.20190910
    [2] 沙莎, 王伟丽, 吴宇昊, 魏炳波. 深过冷条件下Co7Mo6金属间化合物的枝晶生长和维氏硬度研究. 物理学报, 2018, 67(4): 046402. doi: 10.7498/aps.67.20172156
    [3] 林茂杰, 常健, 吴宇昊, 徐山森, 魏炳波. 电磁悬浮条件下液态Fe50Cu50合金的对流和凝固规律研究. 物理学报, 2017, 66(13): 136401. doi: 10.7498/aps.66.136401
    [4] 陈克萍, 吕鹏, 王海鹏. 微重力条件下Cu-Zr共晶合金的液固相变研究. 物理学报, 2017, 66(6): 068101. doi: 10.7498/aps.66.068101
    [5] 谷倩倩, 阮莹, 代富平. 微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响. 物理学报, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
    [6] 朱海哲, 阮莹, 谷倩倩, 闫娜, 代富平. 落管中Ni-Fe-Ti合金的快速凝固机理及其磁学性能. 物理学报, 2017, 66(13): 138101. doi: 10.7498/aps.66.138101
    [7] 王党会, 许天旱, 宋海洋. 纤锌矿GaN外延层薄膜热膨胀行为的变温Raman散射研究. 物理学报, 2016, 65(13): 130702. doi: 10.7498/aps.65.130702
    [8] 魏绍楼, 黄陆军, 常健, 杨尚京, 耿林. 液态Ti-Al合金的深过冷与快速枝晶生长. 物理学报, 2016, 65(9): 096101. doi: 10.7498/aps.65.096101
    [9] 杨尚京, 王伟丽, 魏炳波. 深过冷液态Al-Ni合金中枝晶与共晶生长机理. 物理学报, 2015, 64(5): 056401. doi: 10.7498/aps.64.056401
    [10] 李平原, 陈永亮, 周大进, 陈鹏, 张勇, 邓水全, 崔雅静, 赵勇. 拓扑绝缘体Bi2Te3的热膨胀系数研究. 物理学报, 2014, 63(11): 117301. doi: 10.7498/aps.63.117301
    [11] 刘福生, 陈贤鹏, 谢华兴, 敖伟琴, 李均钦. Sc2-xGaxW3O12体系负热膨胀性能研究. 物理学报, 2010, 59(5): 3350-3356. doi: 10.7498/aps.59.3350
    [12] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [13] 殷涵玉, 鲁晓宇. 深过冷Cu60Sn30Pb10偏晶合金的快速凝固. 物理学报, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [14] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [15] 梅策香, 阮 莹, 代富平, 魏炳波. 深过冷Ag-Cu-Ge三元共晶合金的相组成与凝固特征. 物理学报, 2007, 56(2): 988-993. doi: 10.7498/aps.56.988
    [16] 臧渡洋, 王海鹏, 魏炳波. 深过冷三元Ni-Cu-Co合金的快速枝晶生长. 物理学报, 2007, 56(8): 4804-4809. doi: 10.7498/aps.56.4804
    [17] 张蜡宝, 代富平, 熊予莹, 魏炳波. 深过冷Ni-15%Sn合金熔体表面张力研究. 物理学报, 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
    [18] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能. 物理学报, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
    [19] 刘向荣, 王 楠, 魏炳波. 无容器条件下Cu-Pb偏晶的快速生长. 物理学报, 2005, 54(4): 1671-1678. doi: 10.7498/aps.54.1671
    [20] 姚文静, 杨 春, 韩秀君, 陈 民, 魏炳波, 过增元. 微重力条件下Ni-Cu合金的快速枝晶生长研究. 物理学报, 2003, 52(2): 448-453. doi: 10.7498/aps.52.448
计量
  • 文章访问数:  4092
  • PDF下载量:  777
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-21
  • 修回日期:  2014-01-24
  • 刊出日期:  2014-05-05

Al-Cu-Ge合金的热物理性质与快速凝固规律研究

  • 1. 教育部空间应用物理与化学重点实验室, 应用物理系, 西北工业大学, 西安 710072
    基金项目: 国家自然科学基金(批准号:11104223和51001087)、西北工业大学基础研究基金(批准号:JC201157)和西北工业大学翱翔人才计划资助的课题.

摘要: Al-Cu-Ge合金是典型的三元共晶体系,在工业上有重要的应用价值,对其进行研究有助于了解该合金的热物理性质和提高该合金的结构性能. 本文选择了Al55Cu10Ge35,Al70Cu10Ge20和Al80Cu10Ge10三种成分合金作为研究对象,对合金的固态比热和热膨胀系数进行了测量,并对比分析了合金在近平衡凝固和落管快速凝固条件下的组织特征和凝固路径. 研究发现,合金比热随Al含量的增大和Ge含量的减少而增大. 这三种成分合金的软化温度均为666 K,物理热膨胀系数α在370–650 K温度范围内基本一致,约为1.5×10-5 K-1. 近平衡凝固条件下合金凝固过程中最后一步反应生成的均为(Al)+(Ge)二相共晶而不是三元共晶,这表明(Al)、(Ge)和CuAl2相在这三种成分的Al-Cu-Ge合金中难以同时形核并协同生长. 然而,在快速凝固条件下,初生相的形核和生成受到抑制,合金中更易于形成二相共晶和三元共晶组织.

English Abstract

参考文献 (25)

目录

    /

    返回文章
    返回