搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺铒光纤环形激光器中饱和吸收光栅瞬态特性引发跳模的实验研究

熊水东 徐攀 马明祥 胡正良 胡永明

引用本文:
Citation:

掺铒光纤环形激光器中饱和吸收光栅瞬态特性引发跳模的实验研究

熊水东, 徐攀, 马明祥, 胡正良, 胡永明

Experimental study on mode hopping triggered by transient characteristics of saturable absorber gratings in Er-doped fiber ring lasers

Xiong Shui-Dong, Xu Pan, Ma Ming-Xiang, Hu Zheng-Liang, Hu Yong-Ming
PDF
导出引用
  • 在掺铒光纤环形激光器中插入饱和吸收光栅是获得稳定单纵模激光的常用方法,但跳模难以完全避免. 通过干涉仪动态相移解调法将光频跳变实时转化为相位变化,发现了一种由饱和吸收动态光栅的瞬态响应特性导致的跳模新机理. 实验测量了由腔长快调触发的规则跳模,获得了跳模规律及成因. 此种跳模发生在调制曲线斜率最大值附近区域,通常在相邻模式之间出现,跳模前移频量约为纵模间隔. 在同等调制振幅下,抽运功率越高,触发跳模所需的光频调制频率越大,所需的最小移频量也越大. 实验结果给出了振动和调制条件下激光器稳定工作的条件,这为设计激光器的隔振封装和确定频率调制工作模式下的调制范围提供了实验依据.
    It is preferred to insert a saturable absorber grating in Er-doped fiber ring lasers for obtaining a stable single-longitudinal-mode laser operation; however, mode hopping is hardly avoided in various applications. A new mode hopping mechanism is found by utilizing the interferometric phase-demodulation method to transfer the optical frequency hops to the phase changes in real time. The regular mode hops triggered by fast cavity-length modulation are measured, and the characteristics and the origin of the mode hopping are obtained. Experimental results show that this kind of mode hopping, usually occurring between two neighboring longitudinal modes, may appear near the maximum slope of the modulation curve, and the laser frequency with shift about the space of the longitudinal modes before mode hopping. In addition, both the threshold frequency of the optical frequency modulation and the minimal frequency shift, which can triggered a mode hop, increase with the pump power at the same modulation amplitude. These experimental results can provide the stable operation condition if vibration or modulation exists, and they are helpful for optimal designing of the isolated assemblage or determining the operation range under the modulation condition.
    • 基金项目: 国家自然科学基金(批准号:60908004,11274384)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60908004, 11274384).
    [1]

    Cheng Y, Kringlebotn J T, Loh W H, Laming R I, Payne D N 1995 Opt. Lett. 20 875

    [2]

    Meng Z, Stewart G, Whitenett G 2006 J. Lightwave Technol. 24 2179

    [3]

    Zhang K, Kang J U 2008 Opt. Express 16 14173

    [4]

    Kang M S, Lee M S, Yong J C, Kim B Y 2006 J. Lightwave Technol. 24 1812

    [5]

    Liu J, Yao J, Yao J, Yeap T H 2004 IEEE Photon. Tech. Lett. 16 1020

    [6]

    Libatique N J C, Wang L, Jain R K 2002 Opt. Express 25 1503

    [7]

    Song Y W, Havstad S A, Starodubov D, Xie Y, Willner A E, Feinberg J 2001 IEEE Photon. Tech. Lett. 13 1167

    [8]

    Yu B L, Qian J R, Luo J T, Sun Z P, Yang L H 2001 Chinese J. Quantum Elect 18 345 (in Chinese) [俞本立, 钱景仁, 罗家童, 孙志培, 杨瀛海 2001 量子电子学报 18 345]

    [9]

    Frisken S J 1992 Opt. Lett. 17 1776

    [10]

    Feuer M D 1998 IEEE Photonic Tech. L. 10 1587

    [11]

    Frisken S J 1992 Opt. Lett. 17 1776

    [12]

    Horowitz M, Daisy R, Fischer B, Zyskind J L 1994 Opt. Lett. 19 1406

    [13]

    Pan S, Yao J 2009 Opt. Express 17 5414

    [14]

    Sun J, Yuan X, Zhang X, Huang D 2007 Opt. Commun. 231

    [15]

    Meng Z, Hu Z, Hu Y, Xiong S, Cao C 2007 Fast-turning narrow-linewidth all polarization maintaining fiber ring laser: Laser Source Technology for Defense and Security III, Proc. of SPIE[Z]. 2007: 6552

    [16]

    Wu B, Liu Y Z, Liu S, Zhang Q S 2007 J. Optoelectronics. Laser 7 770 (in Chinese) [伍波, 刘永智, 刘爽, 张谦述, 代志勇 2007 光电子 7 770]

    [17]

    He X, Fang X, Liao C, Wang D N, Sun J 2009 Opt Express 17 21773

    [18]

    Y W Song S M I S, Y Xie, A E Willner, Feinberg J 2001 IEEE Photonic Tech. L. 13 2001

    [19]

    Chien H, Yeh C, Lee C, Chi S 2005 Opt. Commun. 250 163

    [20]

    Ohtsu M, Teramachi Y, Otsuka Y, Osaki A 1986 IEEE J. Quantum. Elect. 22 535

    [21]

    Willemsen M B, Khalid M U F, van Exter M P, Woerdman J P 1999 Phys. Rev. Lett. 82 4815

    [22]

    Beri S, Gelens L, Mestre M, Van der Sande G, Verschaffelt G, Scir A, Mezosi G, Sorel M, Danckaert J 2008 Phys. Rev. Lett. 101 93903

    [23]

    Otsuka K 2001 Nonlinear dynamics in Optical complex system. Boston: Kluwer Academic Publishers

    [24]

    Virte M, Panajotov K, Thienpont H, Sciamanna M 2013 Nat. Photonics 7 60

    [25]

    Lang R, Kobayashi K 1980 IEEE J. Quantum. Elect. 16 347

    [26]

    Heumier T A, Carlsten J L 1993 IEEE J. Quantum. Elect. 25 2756

    [27]

    Sato T, Yamaoto F, Tsuji K, Takesue H, Horiguchi T 2002 IEEE Photonics Technology Letters 14 1001

    [28]

    Tan Y D, Zhang S L 2007 Acta Phys. Sin. 56 2124 (in Chinese)[谈宜东, 张书练 2007 物理学报 56 2124]

    [29]

    Stepanov S, Cota F P 2007 Opt. Lett. 32 2532

    [30]

    Xu P, Hu Z, Jiang N, Ma L, Hu Y 2012 Opt. Lett. 37 1992

    [31]

    Xu P, Hu Z L, Ma M X, Jiang N, Hu Y M 2012 Acta Phys. Sin. 61 174208 (in Chinese)[徐攀, 胡正良, 马明祥, 姜暖, 胡永明 2012 物理学报 61 174208]

    [32]

    Ma M X, Yang H Y, Xu P, Hu Z L, Hu Y M 2012 Acta Opt. Sin. 32 314002 (in Chinese) [马明祥, 杨华勇, 徐攀, 胡正良, 胡永明 2012 光学学报 32 314002]

    [33]

    Ma M X, Xu P, Wang W, Hu Y M 2012 Chinese J. Lasers 39 602013 (in Chinese) [马明祥, 胡正良, 徐攀, 王伟, 胡永明 2012 中国激光 39 602013]

    [34]

    Ma M, Hu Z, Xu P, Wang W, Hu Y 2012 Appl. Optics 51 7420

    [35]

    Ma M, Hu Z, Xu P, Hu Y 2011 Induced mode hopping phenomenon via resonant cavity disturbances in ultra-narrow linewidth erbium-doped fiber ring lasers Beijing: SPIE 2011

    [36]

    Xu P, Hu Z L, Ma M X, Jiang N, Hu Y M 2012 Acta Opt. Sin. 32 814001 (in Chinese) [徐攀, 胡正良, 马明祥, 姜暖, 胡永明 2012 光学学报 32 814001]

    [37]

    Xu P, Hu Z L, Ma M X, Jiang N, Hu Y M 2013 Acta Opt. Sin. 33 120860 (in Chinese) [徐攀, 胡正良, 马明祥, 姜暖, 胡永明 2013 光学学报 33 120860]

    [38]

    Xu P, Hu Z, Ma M, Jiang N, Hu Y 2013 Optics & Laser Technology 49 33

  • [1]

    Cheng Y, Kringlebotn J T, Loh W H, Laming R I, Payne D N 1995 Opt. Lett. 20 875

    [2]

    Meng Z, Stewart G, Whitenett G 2006 J. Lightwave Technol. 24 2179

    [3]

    Zhang K, Kang J U 2008 Opt. Express 16 14173

    [4]

    Kang M S, Lee M S, Yong J C, Kim B Y 2006 J. Lightwave Technol. 24 1812

    [5]

    Liu J, Yao J, Yao J, Yeap T H 2004 IEEE Photon. Tech. Lett. 16 1020

    [6]

    Libatique N J C, Wang L, Jain R K 2002 Opt. Express 25 1503

    [7]

    Song Y W, Havstad S A, Starodubov D, Xie Y, Willner A E, Feinberg J 2001 IEEE Photon. Tech. Lett. 13 1167

    [8]

    Yu B L, Qian J R, Luo J T, Sun Z P, Yang L H 2001 Chinese J. Quantum Elect 18 345 (in Chinese) [俞本立, 钱景仁, 罗家童, 孙志培, 杨瀛海 2001 量子电子学报 18 345]

    [9]

    Frisken S J 1992 Opt. Lett. 17 1776

    [10]

    Feuer M D 1998 IEEE Photonic Tech. L. 10 1587

    [11]

    Frisken S J 1992 Opt. Lett. 17 1776

    [12]

    Horowitz M, Daisy R, Fischer B, Zyskind J L 1994 Opt. Lett. 19 1406

    [13]

    Pan S, Yao J 2009 Opt. Express 17 5414

    [14]

    Sun J, Yuan X, Zhang X, Huang D 2007 Opt. Commun. 231

    [15]

    Meng Z, Hu Z, Hu Y, Xiong S, Cao C 2007 Fast-turning narrow-linewidth all polarization maintaining fiber ring laser: Laser Source Technology for Defense and Security III, Proc. of SPIE[Z]. 2007: 6552

    [16]

    Wu B, Liu Y Z, Liu S, Zhang Q S 2007 J. Optoelectronics. Laser 7 770 (in Chinese) [伍波, 刘永智, 刘爽, 张谦述, 代志勇 2007 光电子 7 770]

    [17]

    He X, Fang X, Liao C, Wang D N, Sun J 2009 Opt Express 17 21773

    [18]

    Y W Song S M I S, Y Xie, A E Willner, Feinberg J 2001 IEEE Photonic Tech. L. 13 2001

    [19]

    Chien H, Yeh C, Lee C, Chi S 2005 Opt. Commun. 250 163

    [20]

    Ohtsu M, Teramachi Y, Otsuka Y, Osaki A 1986 IEEE J. Quantum. Elect. 22 535

    [21]

    Willemsen M B, Khalid M U F, van Exter M P, Woerdman J P 1999 Phys. Rev. Lett. 82 4815

    [22]

    Beri S, Gelens L, Mestre M, Van der Sande G, Verschaffelt G, Scir A, Mezosi G, Sorel M, Danckaert J 2008 Phys. Rev. Lett. 101 93903

    [23]

    Otsuka K 2001 Nonlinear dynamics in Optical complex system. Boston: Kluwer Academic Publishers

    [24]

    Virte M, Panajotov K, Thienpont H, Sciamanna M 2013 Nat. Photonics 7 60

    [25]

    Lang R, Kobayashi K 1980 IEEE J. Quantum. Elect. 16 347

    [26]

    Heumier T A, Carlsten J L 1993 IEEE J. Quantum. Elect. 25 2756

    [27]

    Sato T, Yamaoto F, Tsuji K, Takesue H, Horiguchi T 2002 IEEE Photonics Technology Letters 14 1001

    [28]

    Tan Y D, Zhang S L 2007 Acta Phys. Sin. 56 2124 (in Chinese)[谈宜东, 张书练 2007 物理学报 56 2124]

    [29]

    Stepanov S, Cota F P 2007 Opt. Lett. 32 2532

    [30]

    Xu P, Hu Z, Jiang N, Ma L, Hu Y 2012 Opt. Lett. 37 1992

    [31]

    Xu P, Hu Z L, Ma M X, Jiang N, Hu Y M 2012 Acta Phys. Sin. 61 174208 (in Chinese)[徐攀, 胡正良, 马明祥, 姜暖, 胡永明 2012 物理学报 61 174208]

    [32]

    Ma M X, Yang H Y, Xu P, Hu Z L, Hu Y M 2012 Acta Opt. Sin. 32 314002 (in Chinese) [马明祥, 杨华勇, 徐攀, 胡正良, 胡永明 2012 光学学报 32 314002]

    [33]

    Ma M X, Xu P, Wang W, Hu Y M 2012 Chinese J. Lasers 39 602013 (in Chinese) [马明祥, 胡正良, 徐攀, 王伟, 胡永明 2012 中国激光 39 602013]

    [34]

    Ma M, Hu Z, Xu P, Wang W, Hu Y 2012 Appl. Optics 51 7420

    [35]

    Ma M, Hu Z, Xu P, Hu Y 2011 Induced mode hopping phenomenon via resonant cavity disturbances in ultra-narrow linewidth erbium-doped fiber ring lasers Beijing: SPIE 2011

    [36]

    Xu P, Hu Z L, Ma M X, Jiang N, Hu Y M 2012 Acta Opt. Sin. 32 814001 (in Chinese) [徐攀, 胡正良, 马明祥, 姜暖, 胡永明 2012 光学学报 32 814001]

    [37]

    Xu P, Hu Z L, Ma M X, Jiang N, Hu Y M 2013 Acta Opt. Sin. 33 120860 (in Chinese) [徐攀, 胡正良, 马明祥, 姜暖, 胡永明 2013 光学学报 33 120860]

    [38]

    Xu P, Hu Z, Ma M, Jiang N, Hu Y 2013 Optics & Laser Technology 49 33

  • [1] 杨亚涛, 邹媛, 曾琼, 宋宇锋, 王可, 王振洪. 多孤子和类噪声脉冲共存的锁模光纤激光器. 物理学报, 2022, 71(13): 134205. doi: 10.7498/aps.71.20220250
    [2] 赵畅, 黄千千, 黄梓楠, 戴礼龙, SergeyevSergey, RozhinAleksey, 牟成博. 偏振动态可调耗散孤子光纤激光器实验研究. 物理学报, 2020, 69(18): 184218. doi: 10.7498/aps.69.20201305
    [3] 张倩, 金鑫鑫, 张梦, 郑铮. 基于二维纳米材料可饱和吸收体的中红外超快光纤激光器. 物理学报, 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [4] 彭万敬, 刘鹏. 基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器. 物理学报, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [5] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定. 物理学报, 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [6] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波. 物理学报, 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [7] 冯德军, 黄文育, 姜守振, 季伟, 贾东方. 基于少数层石墨烯可饱和吸收的锁模光纤激光器. 物理学报, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [8] 张大鹏, 胡明列, 谢辰, 柴路, 王清月. 基于非线性偏振旋转锁模的高功率光子晶体光纤飞秒激光振荡器. 物理学报, 2012, 61(4): 044206. doi: 10.7498/aps.61.044206
    [9] 韩旭, 冯国英, 武传龙, 姜东升, 周寿桓. 掺镱光纤激光器自脉冲与自脉冲内的自锁模研究 . 物理学报, 2012, 61(11): 114204. doi: 10.7498/aps.61.114204
    [10] 徐攀, 胡正良, 马明祥, 姜暖, 胡永明. 光频率调制法测量动态光栅瞬态反射谱特性. 物理学报, 2012, 61(17): 174208. doi: 10.7498/aps.61.174208
    [11] 刘艳, 汪磊石, 陶沛琳, 冯素春, 尹国路, 任文华, 谭中伟, 简水生. 波长可调谐取样光纤光栅激光器的输出特性研究. 物理学报, 2011, 60(2): 024207. doi: 10.7498/aps.60.024207
    [12] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器. 物理学报, 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [13] 宋有建, 胡明列, 谢辰, 柴路, 王清月. 输出近百纳焦耳脉冲能量的光子晶体光纤锁模激光器. 物理学报, 2010, 59(10): 7105-7110. doi: 10.7498/aps.59.7105
    [14] 张鑫, 胡明列, 宋有健, 柴路, 王清月. 大模场面积光子晶体光纤耗散孤子锁模激光器. 物理学报, 2010, 59(3): 1863-1869. doi: 10.7498/aps.59.1863
    [15] 张驰, 胡明列, 宋有建, 张鑫, 柴路, 王清月. 自由耦合输出的大模场面积光子晶体光纤锁模激光器. 物理学报, 2009, 58(11): 7727-7734. doi: 10.7498/aps.58.7727
    [16] 许 鸥, 鲁韶华, 简水生. 用于单频光纤激光器的光纤光栅双腔Fabry-Perot结构传输谱特性理论研究. 物理学报, 2008, 57(10): 6404-6411. doi: 10.7498/aps.57.6404
    [17] 宋有建, 胡明列, 刘庆文, 李进延, 陈 伟, 柴 路, 王清月. 掺Yb3+双包层大模场面积光纤锁模激光器. 物理学报, 2008, 57(8): 5045-5048. doi: 10.7498/aps.57.5045
    [18] 宋有建, 胡明列, 刘博文, 柴 路, 王清月. 高能量掺Yb偏振型大模场面积光子晶体光纤孤子锁模飞秒激光器. 物理学报, 2008, 57(10): 6425-6429. doi: 10.7498/aps.57.6425
    [19] 邱 巍, 掌蕴东, 叶建波, 田 赫, 王 楠, 王金芳, 袁 萍. 室温条件下掺铒光纤中光脉冲群速可控特性的研究. 物理学报, 2007, 56(12): 7009-7014. doi: 10.7498/aps.56.7009
    [20] 董淑福, 占生宝, 陈国夫, 王贤华. 3μm与2μm级联振荡Ho3+:ZBLAN光纤激光器的动态特性分析. 物理学报, 2005, 54(7): 3154-3158. doi: 10.7498/aps.54.3154
计量
  • 文章访问数:  3348
  • PDF下载量:  340
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-23
  • 修回日期:  2014-02-07
  • 刊出日期:  2014-07-05

掺铒光纤环形激光器中饱和吸收光栅瞬态特性引发跳模的实验研究

  • 1. 国防科技大学光电科学与工程学院, 长沙 410073
    基金项目: 国家自然科学基金(批准号:60908004,11274384)资助的课题.

摘要: 在掺铒光纤环形激光器中插入饱和吸收光栅是获得稳定单纵模激光的常用方法,但跳模难以完全避免. 通过干涉仪动态相移解调法将光频跳变实时转化为相位变化,发现了一种由饱和吸收动态光栅的瞬态响应特性导致的跳模新机理. 实验测量了由腔长快调触发的规则跳模,获得了跳模规律及成因. 此种跳模发生在调制曲线斜率最大值附近区域,通常在相邻模式之间出现,跳模前移频量约为纵模间隔. 在同等调制振幅下,抽运功率越高,触发跳模所需的光频调制频率越大,所需的最小移频量也越大. 实验结果给出了振动和调制条件下激光器稳定工作的条件,这为设计激光器的隔振封装和确定频率调制工作模式下的调制范围提供了实验依据.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回