搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向综合定位导航授时系统的天地基脉冲星时间研究

周庆勇 魏子卿 闫林丽 孙鹏飞 刘思伟 冯来平 姜坤 王奕迪 朱永兴 刘晓刚 明锋 张奋 贺珍妮

引用本文:
Citation:

面向综合定位导航授时系统的天地基脉冲星时间研究

周庆勇, 魏子卿, 闫林丽, 孙鹏飞, 刘思伟, 冯来平, 姜坤, 王奕迪, 朱永兴, 刘晓刚, 明锋, 张奋, 贺珍妮

Space/ground based pulsar timescale for comprehensive PNT system

Zhou Qing-Yong, Wei Zi-Qing, Yan Lin-Li, Sun Peng-Fei, Liu Si-Wei, Feng Lai-Ping, Jiang Kun, Wang Yi-Di, Zhu Yong-Xing, Liu Xiao-Gang, Ming Feng, Zhang Fen, He Zhen-Ni
PDF
HTML
导出引用
  • 中国综合定位导航授时(positioning navigation timing, PNT)体系是以北斗卫星导航系统(BeiDou navigation satellite system, BDS)为核心的多源信息融合系统, 高精度的毫秒脉冲星计时能够增强BDS时间基准的长期稳定性, 并能维持未来深空用户的时间基准. 本文提出了一种改善BDS时间基准长期稳定性的脉冲星时地面服务系统, 概述了该系统的初步设计与功能, 同时研究了天地基脉冲星时建立方法, 利用3颗毫秒脉冲星的国际脉冲星计时阵(international pulsar timing array, IPTA)地面射电、“中子星内部成分探测器”(neutron star interior composition explorer, NICER)空间X射线计时数据以及500 m口径球面射电望远镜(five-hundred-meter aperture spherical radio telescope, FAST)模拟数据, 分析了天地基脉冲星时的稳定性. 研究结果表明, 基于IPTA数据的PSR J0437-4715地基脉冲星时的年稳定度为3.30 × 10–14, 10年的稳定度为1.23 × 10–15. 脉冲星红噪声会降低脉冲星时稳定性, PSR J1939+2134地基脉冲星时的年稳定度为6.51 × 10–12. 同时研究发现脉冲到达时间(time of arrival, TOA)的精度是制约天基脉冲星时稳定性的重要因素, 基于NICER空间X射线计时数据的PSR J1824-2452A天基脉冲星时年稳定度为1.36 × 10–13. 最后模拟分析了FAST将来对脉冲星时的贡献, 在不考虑红噪声的影响下, 基于FAST的PSR J1939+2134地基脉冲星时的年稳定度为2.55 × 10–15, 10年稳定度为1.39 × 10–16, 20年稳定度为5.08 × 10–17, 显示了FAST强大的脉冲星观测能力. FAST计时观测将有力地提升中国地基脉冲星时系统建设水平, 也能增强中国综合PNT系统时间基准的长期稳定性.
    The comprehensive positioning navigation timing (PNT) system in China is a multi-source information fusion system with BeiDou navigation satellite system (BDS) as a core. The high-precision millisecond pulsar timing can enhance the long-term stability of the BDS time benchmark and maintain a space-time benchmark for future deep-space users. In this paper, a ground-based pulsar time service system is proposed for detecting and improving the time benchmark of BDS. The preliminary designs and functions of the system are outlined. At the same time, the method of establishing space and ground-based pulsar time is studied. The ground radio timing data from the international pulsar timing array (IPTA), the X-ray timing data from the neutron star interior composition explorer (NICER) in space, and the simulation data from the 500-meter spherical radio telescope (five-hundred-meter aperture spherical radio telescope, FAST) for three millisecond pulsars are used to analyze the stability of ground/space-based pulsar time. The research results are as follows. The annual stability of the PSR J0437-4715 ground-based pulsar time based on IPTA data is 3.30 × 10–14, and the 10-year stability is 1.23 × 10–15, respectively. The existence of pulsar red noise can reduce the time stability of the pulsar. The annual stability of the PSR J1939+2134 ground-based pulsar time is 6.51 × 10–12. We find that the accuracy of the pulse time of Arrival(TOA) is an important factor that restricts the stability of space-based pulsar time. Based on NICER space X-ray timing data, the stability of the pulsar time for PSR J1824-2452A is 1.36 × 10–13 in one year. Finally, the simulation analysis of the FAST’s data without considering the influence of red noise is completed, and we find that the PSR J1939+2134 ground-based pulsar time based on the FAST has an annual stability of 2.55 × 10–15, a 10-year stability of 1.39 × 10–16, and a 20-year stability of 5.08 × 10–17. It demonstrates that the powerful pulsar observation capability of FAST will help to improve the accuracy of ground-based pulsar time and enhance the long-term stability of the comprehensive PNT system time benchmark in China.
      通信作者: 闫林丽, yan.linli@foxmail.com
    • 基金项目: 国家重点基础研究发展计划(批准号: 2020YFB0505800)、国家自然科学基金(批准号: 42004004, 42074006, 11903001)、安徽省高校省级自然科学研究项目(批准号: KJ2019A0787)、安徽建筑大学校博士启动基金项目(批准号: 2019QDZ14)和国家社会科学基金(批准号: 2020-SKJJ-C-043)资助的课题
      Corresponding author: Yan Lin-Li, yan.linli@foxmail.com
    • Funds: Project supported by the State Key Development Program for Basic Research of China (Grant No. 2020YFB0505800), the National Science Foundation of China (Grant Nos. 42004004, 42074006, 11903001), the Key Research Foundation of Education Ministry of Anhui Province (Grant No. KJ2019A0787), the Doctor Foundation of Anhui Jianzhu University 2019 (Grant No. 2019QDZ14), and National Social Science Foundation of China (Grant No. 2020-SKJJ-C-043)
    [1]

    Soffel M, Langhans R 2013 Space-Time Reference Systems (Berlin: Springer) pp49−55

    [2]

    Major F G 2007 The Quantum Beat-Principles and Applications of Atomic Clocks (2nd Ed.) (NewYork: Springer) pp1–10

    [3]

    翟造成, 张为群, 蔡勇, 杨佩红 2008 原子钟基本原理与时频测量技术 (上海: 上海科学技术文献出版社) 第23−30页

    Zhai Z Z, Zhang W Q, Yong C, Yang P H 2008 Basic Principle of Atomic Clock and Time Frequency Measurement Technology (Shanghai: Shanghai Science and Technology Literature Press) pp23−30 (in Chinese)

    [4]

    黄秉英 2006 新一代原子钟 (武汉: 武汉大学出版社) 第67页

    Huang B Y 2006 New Generation Atomic Clock (Wuhan: Wuhan University Press) p67(in Chinese)

    [5]

    谢军, 刘庆军, 边朗 2017 空间电子技术 5 1Google Scholar

    Xie J, Liu Q J, Bian L 2017 Space Electronic Technology 5 1Google Scholar

    [6]

    杨元喜 2016 测绘学报 45 505Google Scholar

    Yang Y X 2016 Acta Geodaetica et Cartographica Sin. 45 505Google Scholar

    [7]

    National positioning, navigation, and timing architecture implementation plan, United States. National Security Space Office https://rosap.ntl.bts.gov/view/dot/18293[2021-3-8]

    [8]

    National positioning navigation and timing architecture, National Security Space Office. https://rosap.ntl.bts.gov/view/dot/34816 [2021-3-8]

    [9]

    杨元喜 2018 测绘学报 47 893Google Scholar

    Yang Y X 2018 Acta Geodaetica et Cartographica Sin. 47 893Google Scholar

    [10]

    冉承其 2014 卫星应用 8 13

    Ran C Q 2014 Satellite Applications 8 13

    [11]

    Zheng J J 2020. Pulsar Navigation Technology Academic Forum, Guangzhou, China, December 5, 2020, p1020

    [12]

    II’in V G, Ilyasov Y P, Kuz’min A D, Pushkin S B 1984 Meas. Tech. 62 52

    [13]

    Petit G, TavellaP 1996 A&A. 308 290

    [14]

    Ilyasov Y P, Kopeikin S M, Rodin A 1998 Astron. Lett. 24 228

    [15]

    Ricardo P, Esteban G, Pedro R, Michael K, Benjamin S, Setnam S, Kathryn B, John D, Stefano B 2019 Proceedings of the 2019 Precise Time and Time Interval Meeting, ION PTTI 2019, Reston, USA January 28–31, 2019 p191

    [16]

    Allan D W 1987 41 st Annual Frequency Control Symposium of IEEE Philadelphia, USA 23–29 May, 1987 p751

    [17]

    Taylor J H 1991 Proceedings of the IEEE 79 1054Google Scholar

    [18]

    Kaspi V M, Taylor J H, Ryba M F 1994 APJ l 428 713Google Scholar

    [19]

    Lommen A N 2001 Ph. D. Dissertation (Berkeley: University of California Berkeley)

    [20]

    Vivekanand M 2020 APJ 890 143Google Scholar

    [21]

    Rodin A E, Fedorova V A A 2018 Astron. Rep. 95 401

    [22]

    Hobbs G, Coles W, Manchester R N, Keith M J, Shannon R M, Chen D, Bailes M, Bhat N D R, Burke-Spolaor S, Champion D, Chaudhary A, Hotan A, Khoo J, Kocz J, Levin Y, Oslowski S, Preisig B, Ravi V, Reynolds J E, Sarkissian J, Straten W V, Verbiest J P W, Yardley D, You X P 2012 MNRAS 427 2780Google Scholar

    [23]

    Hobbs G, Guo Li, Manchester R N, Coles W, Lee K J, Manchester R N, Reardon D J, Matsakis D, Tong M L, Arzoumanian Z, Bailes M, Bassa C G, Bhat N D R, Brazier A, Burke-Spolaor S, Champion D J, Chatterjee S, Cognard I, Dai S, Desvignes G, Dolch T, Ferdman R D, Graikou E, Guillemot L, Janssen G H, Keith M J, Kerr M, Kramer M, Lam M T, Liu K, Lyne A, Lazio T J W, Lynch R, McKee J W, McLaughlin M A, Mingarelli C M F, Nice D J, Oslowski S, Pennucci T T, Perera B B P, Perrodin D, Possenti A, Russell C J, Sanidas S, Sesana A, Shaifullah G, Shannon R M, Simon J, Spiewak R, Stairs I H, Stappers B W, Swiggum J K, Taylor S R, Theureau G, Toomey L, Haasteren R V, Wang J B, Wang Y, Zhu X J 2020 MNRAS 491 5951Google Scholar

    [24]

    仲崇霞. 2007 博士论文(西安: 中科院国家授时中心)

    Zhong C X 2007 Ph.D. Dissertation(Xi'an: National Time Service Center of Chinese Academy of Sciences)(in Chinese)

    [25]

    尹东山, 高玉平, 赵书红 2016 天文学报 3 326

    Yin D S, Gao Y P, ZhaoS H 2016 Acta Astronom. Sin. 3 326

    [26]

    Li Z X, Lee K J, Ricardo N C, Yong H X, Long G H, Min W Jian C W 2020 Sci. China Phys. Mech. 63 1

    [27]

    Space navigation using X-ray pulsar observations, Hanson J E. http://scpnt.stanford.edu/pnt/PNT11/2011_presentation_files/03_Hanson-PNt2011.pdf. [2012-12-23]

    [28]

    周庆勇. 2020 博士论文(郑州: 信息工程大学)

    Zhou Q Y. 2020 Ph.D. Dissertation(Zhengzhou: PLA University of information engineering) (in Chinese)

    [29]

    Of Future IAU recommendations and organization, McCarthy D Dhttps://ui.adsabs.harvard.edu/abs/2012jsrs.conf..263M/abstract[2020-03-03]

    [30]

    童明雷, 杨廷高, 赵成仕, 高玉平 2017 中国科学: 物理学力学天文学 47 099503Google Scholar

    Tong M L, Yang T G, Zhao C S, Gao Y P 2017 Sci. Sin-Phys. Mech. Astron. 47 099503Google Scholar

    [31]

    周庆勇, 姬剑锋, 任红飞 2013 物理学报 62 139701Google Scholar

    Zhou Q Y, Ji J F, Ren H F 2013 Acta Phys. Sin. 62 139701Google Scholar

    [32]

    Edwards R T, Hobbs G B, Manchester R N 2006 MNRAS 372 1549Google Scholar

    [33]

    Matsakis D N, Taylor J H, Eubanks T M 1997 A&A 326 924

    [34]

    Autonomous spacecraft Navigation with Pulsars, Becker W, Bernhardt M G, Jessner A https://arxiv.org/pdf/1305.4842.pdf. [2015-08-10]

    [35]

    Gotthelf E V, Bogdanov S 2017 APJ 845 159Google Scholar

    [36]

    Perera B B P, DeCesar M E, Demorest P B, Kerr M, Lentati L, Nice D J, Osłowski S, Ransom S M, Keith M J, Arzoumanian Z, Bailes M, Baker P T, Bassa C G, Bhat N D R, Brazier A, Burgay M, Burke-Spolaor S, Caballero R N, Champion D J, Chatterjee S, Chen S, Cognard I, Cordes J M, Crowter K, Dai S, Desvignes G, Dolch T, Ferdman R D, Ferrara E C, Fonseca E, Goldstein J M, Graikou E, Guillemot L, Hazboun J S, Hobbs G, Hu H, Islo K, Janssen G H, Karuppusamy R, Kramer M, Lam M T, Lee K J, Liu K, Luo J, Lyne A G, Manchester R N, McKee J W, McLaughlin M A, Mingarelli C M F, Parthasarathy A P, Pennucci T T, Perrodin D, Possenti A, Reardon D J, Russell C J, Sanidas S A, Sesana A, Shaifullah G, Shannon R M, Siemens X, Simon J, Spiewak R, Stairs I H, Stappers B W, Swiggum J K, Taylor S R, Theureau G, Tiburzi C, Vallisneri M, Vecchio A, Wang J B, Zhang S B, Zhang L, Zhu W W, Zhu X J 2019 MNRAS 490 4666Google Scholar

    [37]

    Dominick M R, Zaynab G, Lauren L, Elizabeth S, Andrea L, Alice H, Christo V, Renee L, Paul S R, Matthew k, Zaven A, Slavko B, Julia D, Sebastien G, Natalia L, Craig B M, Scott R, Teruaki E, Kent S W, Keith C G 2020 APJ 892 150Google Scholar

    [38]

    NASA GSFC Science and Exploration, NASA http://heasarc.gsfc.nasa.gov/cgi-bin/W3 Browse/w3 browse.pl [2021-3-8]

    [39]

    Deneva J S, Ray P S, Lommen A, Ransom S M, Bogdanov S, Kerr M, Wood K S, Arzoumanian Z, Black K, Doty J, Gendreau K C, Guillot S, Harding A, Lewandowska N, Malacaria C, Markwardt C B, Price S, Winternitz L, Wolff M T, Guillemot L, Cognard I, Baker P T, Blumer H, Brook P R, Cromartie H T, Demorest P B, DeCesar M E, Dolch T, Ellis J A, Ferdman R D, Ferrara E C, Fonseca E, Garver-Daniels N, Gentile P A, Jones M L, Lam M T, Lorimer D R, Lynch R S, McLaughlin M A, Ng C, Nice D J, Pennucci T T, Spiewak R, Stairs I H, Stovall K, Swiggum J K, Vigeland S J, Zhu W W 2019 APJ 874 160Google Scholar

    [40]

    Nan R D, Wang Q M, Zhu L C, Zhu W B, Jin C J, Gan H Q 2006 CJAA 6 304Google Scholar

    [41]

    Yonemaru N, Kuroyanagi S, Hobbs G, Takahashi, Zhu X J, Coles W A, Dai S, Howard E, Manchester R, Reardon D, Russell C, Shannon R M, Thyagarajan N, Spiewak R, Wang J B 2020 MNRAS 501 701Google Scholar

    [42]

    周庆勇, 刘思伟, 郝晓龙, 姬剑锋, 贺珍妮, 张彩红 2016 物理学报 65 079701Google Scholar

    Zhou Q Y, Liu S W, Hao X L, Ji J F, He Z N, Zhang C H 2016 Acta Phys. Sin. 65 079701Google Scholar

    [43]

    Li K J 2010 CPTA Pulsar Navigation Technology Academic Forum Guangzhou, China, December 5, 2020, pp1−27

  • 图 1  中国脉冲星时地面服务系统的结构图(参考PulChron项目系统结构)[15]

    Fig. 1.  Structure diagram of China pulsar time ground service system (refer to the structure of PulChron project system)[15].

    图 2  两颗毫秒脉冲星的射电及X射线脉冲轮廓[34]

    Fig. 2.  Radio and X-ray pulse profiles of two millisecond pulsars[34].

    图 3  基于IPTA毫秒脉冲星计时数据的地基脉冲星时

    Fig. 3.  Ground-based pulsar time based on IPTA millisecond pulsar timing data.

    图 4  IPTA脉冲星计时数据构建的地基脉冲星时的稳定度

    Fig. 4.  Stability of ground-based pulsar time constructed by IPTA pulsar timing data.

    图 5  基于NICER毫秒脉冲星计时数据的天基脉冲星时

    Fig. 5.  Space-based pulsar time based on NICER millisecond pulsar timing data.

    图 6  NICER计时数据构建的天基脉冲星时的稳定度

    Fig. 6.  Stability of space-based pulsar time constructed by NICER timing data.

    图 7  基于FAST模拟计时数据的地基脉冲星时

    Fig. 7.  Ground-based pulsar time based on FAST simulation timing data.

    图 8  FAST模拟数据构建的地基脉冲星时的稳定度

    Fig. 8.  Stability of ground-based pulsar constructed by FAST simulation timing data.

    图 9  基于IPTA计时数据的PSR J0437-4715地基脉冲星时的稳定性

    Fig. 9.  Stability of PSR J0437-4715 ground-based pulsar based on IPTA timing data.

    表 1  两颗毫秒脉冲星的基本信息

    Table 1.  Basic information of two millisecond pulsars.

    NAMEP0/msDIST/kpcf1400/mJyFLUX/(erg·s–1·cm–2)W50/ms
    J1939+21341.557806561084933.515.21.8 × 10–120.0382
    J1824-2452A3.05431559227125.52.01.5 × 10–130.972
    下载: 导出CSV
  • [1]

    Soffel M, Langhans R 2013 Space-Time Reference Systems (Berlin: Springer) pp49−55

    [2]

    Major F G 2007 The Quantum Beat-Principles and Applications of Atomic Clocks (2nd Ed.) (NewYork: Springer) pp1–10

    [3]

    翟造成, 张为群, 蔡勇, 杨佩红 2008 原子钟基本原理与时频测量技术 (上海: 上海科学技术文献出版社) 第23−30页

    Zhai Z Z, Zhang W Q, Yong C, Yang P H 2008 Basic Principle of Atomic Clock and Time Frequency Measurement Technology (Shanghai: Shanghai Science and Technology Literature Press) pp23−30 (in Chinese)

    [4]

    黄秉英 2006 新一代原子钟 (武汉: 武汉大学出版社) 第67页

    Huang B Y 2006 New Generation Atomic Clock (Wuhan: Wuhan University Press) p67(in Chinese)

    [5]

    谢军, 刘庆军, 边朗 2017 空间电子技术 5 1Google Scholar

    Xie J, Liu Q J, Bian L 2017 Space Electronic Technology 5 1Google Scholar

    [6]

    杨元喜 2016 测绘学报 45 505Google Scholar

    Yang Y X 2016 Acta Geodaetica et Cartographica Sin. 45 505Google Scholar

    [7]

    National positioning, navigation, and timing architecture implementation plan, United States. National Security Space Office https://rosap.ntl.bts.gov/view/dot/18293[2021-3-8]

    [8]

    National positioning navigation and timing architecture, National Security Space Office. https://rosap.ntl.bts.gov/view/dot/34816 [2021-3-8]

    [9]

    杨元喜 2018 测绘学报 47 893Google Scholar

    Yang Y X 2018 Acta Geodaetica et Cartographica Sin. 47 893Google Scholar

    [10]

    冉承其 2014 卫星应用 8 13

    Ran C Q 2014 Satellite Applications 8 13

    [11]

    Zheng J J 2020. Pulsar Navigation Technology Academic Forum, Guangzhou, China, December 5, 2020, p1020

    [12]

    II’in V G, Ilyasov Y P, Kuz’min A D, Pushkin S B 1984 Meas. Tech. 62 52

    [13]

    Petit G, TavellaP 1996 A&A. 308 290

    [14]

    Ilyasov Y P, Kopeikin S M, Rodin A 1998 Astron. Lett. 24 228

    [15]

    Ricardo P, Esteban G, Pedro R, Michael K, Benjamin S, Setnam S, Kathryn B, John D, Stefano B 2019 Proceedings of the 2019 Precise Time and Time Interval Meeting, ION PTTI 2019, Reston, USA January 28–31, 2019 p191

    [16]

    Allan D W 1987 41 st Annual Frequency Control Symposium of IEEE Philadelphia, USA 23–29 May, 1987 p751

    [17]

    Taylor J H 1991 Proceedings of the IEEE 79 1054Google Scholar

    [18]

    Kaspi V M, Taylor J H, Ryba M F 1994 APJ l 428 713Google Scholar

    [19]

    Lommen A N 2001 Ph. D. Dissertation (Berkeley: University of California Berkeley)

    [20]

    Vivekanand M 2020 APJ 890 143Google Scholar

    [21]

    Rodin A E, Fedorova V A A 2018 Astron. Rep. 95 401

    [22]

    Hobbs G, Coles W, Manchester R N, Keith M J, Shannon R M, Chen D, Bailes M, Bhat N D R, Burke-Spolaor S, Champion D, Chaudhary A, Hotan A, Khoo J, Kocz J, Levin Y, Oslowski S, Preisig B, Ravi V, Reynolds J E, Sarkissian J, Straten W V, Verbiest J P W, Yardley D, You X P 2012 MNRAS 427 2780Google Scholar

    [23]

    Hobbs G, Guo Li, Manchester R N, Coles W, Lee K J, Manchester R N, Reardon D J, Matsakis D, Tong M L, Arzoumanian Z, Bailes M, Bassa C G, Bhat N D R, Brazier A, Burke-Spolaor S, Champion D J, Chatterjee S, Cognard I, Dai S, Desvignes G, Dolch T, Ferdman R D, Graikou E, Guillemot L, Janssen G H, Keith M J, Kerr M, Kramer M, Lam M T, Liu K, Lyne A, Lazio T J W, Lynch R, McKee J W, McLaughlin M A, Mingarelli C M F, Nice D J, Oslowski S, Pennucci T T, Perera B B P, Perrodin D, Possenti A, Russell C J, Sanidas S, Sesana A, Shaifullah G, Shannon R M, Simon J, Spiewak R, Stairs I H, Stappers B W, Swiggum J K, Taylor S R, Theureau G, Toomey L, Haasteren R V, Wang J B, Wang Y, Zhu X J 2020 MNRAS 491 5951Google Scholar

    [24]

    仲崇霞. 2007 博士论文(西安: 中科院国家授时中心)

    Zhong C X 2007 Ph.D. Dissertation(Xi'an: National Time Service Center of Chinese Academy of Sciences)(in Chinese)

    [25]

    尹东山, 高玉平, 赵书红 2016 天文学报 3 326

    Yin D S, Gao Y P, ZhaoS H 2016 Acta Astronom. Sin. 3 326

    [26]

    Li Z X, Lee K J, Ricardo N C, Yong H X, Long G H, Min W Jian C W 2020 Sci. China Phys. Mech. 63 1

    [27]

    Space navigation using X-ray pulsar observations, Hanson J E. http://scpnt.stanford.edu/pnt/PNT11/2011_presentation_files/03_Hanson-PNt2011.pdf. [2012-12-23]

    [28]

    周庆勇. 2020 博士论文(郑州: 信息工程大学)

    Zhou Q Y. 2020 Ph.D. Dissertation(Zhengzhou: PLA University of information engineering) (in Chinese)

    [29]

    Of Future IAU recommendations and organization, McCarthy D Dhttps://ui.adsabs.harvard.edu/abs/2012jsrs.conf..263M/abstract[2020-03-03]

    [30]

    童明雷, 杨廷高, 赵成仕, 高玉平 2017 中国科学: 物理学力学天文学 47 099503Google Scholar

    Tong M L, Yang T G, Zhao C S, Gao Y P 2017 Sci. Sin-Phys. Mech. Astron. 47 099503Google Scholar

    [31]

    周庆勇, 姬剑锋, 任红飞 2013 物理学报 62 139701Google Scholar

    Zhou Q Y, Ji J F, Ren H F 2013 Acta Phys. Sin. 62 139701Google Scholar

    [32]

    Edwards R T, Hobbs G B, Manchester R N 2006 MNRAS 372 1549Google Scholar

    [33]

    Matsakis D N, Taylor J H, Eubanks T M 1997 A&A 326 924

    [34]

    Autonomous spacecraft Navigation with Pulsars, Becker W, Bernhardt M G, Jessner A https://arxiv.org/pdf/1305.4842.pdf. [2015-08-10]

    [35]

    Gotthelf E V, Bogdanov S 2017 APJ 845 159Google Scholar

    [36]

    Perera B B P, DeCesar M E, Demorest P B, Kerr M, Lentati L, Nice D J, Osłowski S, Ransom S M, Keith M J, Arzoumanian Z, Bailes M, Baker P T, Bassa C G, Bhat N D R, Brazier A, Burgay M, Burke-Spolaor S, Caballero R N, Champion D J, Chatterjee S, Chen S, Cognard I, Cordes J M, Crowter K, Dai S, Desvignes G, Dolch T, Ferdman R D, Ferrara E C, Fonseca E, Goldstein J M, Graikou E, Guillemot L, Hazboun J S, Hobbs G, Hu H, Islo K, Janssen G H, Karuppusamy R, Kramer M, Lam M T, Lee K J, Liu K, Luo J, Lyne A G, Manchester R N, McKee J W, McLaughlin M A, Mingarelli C M F, Parthasarathy A P, Pennucci T T, Perrodin D, Possenti A, Reardon D J, Russell C J, Sanidas S A, Sesana A, Shaifullah G, Shannon R M, Siemens X, Simon J, Spiewak R, Stairs I H, Stappers B W, Swiggum J K, Taylor S R, Theureau G, Tiburzi C, Vallisneri M, Vecchio A, Wang J B, Zhang S B, Zhang L, Zhu W W, Zhu X J 2019 MNRAS 490 4666Google Scholar

    [37]

    Dominick M R, Zaynab G, Lauren L, Elizabeth S, Andrea L, Alice H, Christo V, Renee L, Paul S R, Matthew k, Zaven A, Slavko B, Julia D, Sebastien G, Natalia L, Craig B M, Scott R, Teruaki E, Kent S W, Keith C G 2020 APJ 892 150Google Scholar

    [38]

    NASA GSFC Science and Exploration, NASA http://heasarc.gsfc.nasa.gov/cgi-bin/W3 Browse/w3 browse.pl [2021-3-8]

    [39]

    Deneva J S, Ray P S, Lommen A, Ransom S M, Bogdanov S, Kerr M, Wood K S, Arzoumanian Z, Black K, Doty J, Gendreau K C, Guillot S, Harding A, Lewandowska N, Malacaria C, Markwardt C B, Price S, Winternitz L, Wolff M T, Guillemot L, Cognard I, Baker P T, Blumer H, Brook P R, Cromartie H T, Demorest P B, DeCesar M E, Dolch T, Ellis J A, Ferdman R D, Ferrara E C, Fonseca E, Garver-Daniels N, Gentile P A, Jones M L, Lam M T, Lorimer D R, Lynch R S, McLaughlin M A, Ng C, Nice D J, Pennucci T T, Spiewak R, Stairs I H, Stovall K, Swiggum J K, Vigeland S J, Zhu W W 2019 APJ 874 160Google Scholar

    [40]

    Nan R D, Wang Q M, Zhu L C, Zhu W B, Jin C J, Gan H Q 2006 CJAA 6 304Google Scholar

    [41]

    Yonemaru N, Kuroyanagi S, Hobbs G, Takahashi, Zhu X J, Coles W A, Dai S, Howard E, Manchester R, Reardon D, Russell C, Shannon R M, Thyagarajan N, Spiewak R, Wang J B 2020 MNRAS 501 701Google Scholar

    [42]

    周庆勇, 刘思伟, 郝晓龙, 姬剑锋, 贺珍妮, 张彩红 2016 物理学报 65 079701Google Scholar

    Zhou Q Y, Liu S W, Hao X L, Ji J F, He Z N, Zhang C H 2016 Acta Phys. Sin. 65 079701Google Scholar

    [43]

    Li K J 2010 CPTA Pulsar Navigation Technology Academic Forum Guangzhou, China, December 5, 2020, pp1−27

  • [1] 张少军, 郭智, 成加皿, 王勇, 陈家华, 刘志. 高重频硬X射线自由电子激光脉冲到达时间诊断方法研究. 物理学报, 2023, 72(10): 105203. doi: 10.7498/aps.72.20222424
    [2] 韩孟纳, 童明雷. 基于脉冲星观测的原子时波动检验研究. 物理学报, 2023, 72(7): 079701. doi: 10.7498/aps.72.20222208
    [3] 方海燕, 丛少鹏, 孙海峰, 李小平, 苏剑宇, 张力, 沈利荣. 具有多物理特性的X射线脉冲星导航地面验证系统. 物理学报, 2019, 68(8): 089701. doi: 10.7498/aps.68.20182232
    [4] 康志伟, 吴春艳, 刘劲, 马辛, 桂明臻. 基于两级压缩感知的脉冲星时延估计方法. 物理学报, 2018, 67(9): 099701. doi: 10.7498/aps.67.20172100
    [5] 徐能, 盛立志, 张大鹏, 陈琛, 赵宝升, 郑伟, 刘纯亮. X射线脉冲星导航动态模拟实验系统研制与性能测试. 物理学报, 2017, 66(5): 059701. doi: 10.7498/aps.66.059701
    [6] 方海燕, 刘兵, 李小平, 孙海峰, 薛梦凡, 沈利荣, 朱金鹏. 一种基于最优频段的X射线脉冲星累积轮廓时延估计方法. 物理学报, 2016, 65(11): 119701. doi: 10.7498/aps.65.119701
    [7] 代锦飞, 赵宝升, 盛立志, 周雁楠, 陈琛, 宋娟, 刘永安, 李林森. 标定脉冲星导航探测器的荧光X射线光源. 物理学报, 2015, 64(14): 149701. doi: 10.7498/aps.64.149701
    [8] 宋佳凝, 徐国栋, 李鹏飞. 多谐波脉冲星信号时延估计方法. 物理学报, 2015, 64(21): 219702. doi: 10.7498/aps.64.219702
    [9] 孙海峰, 谢楷, 李小平, 方海燕, 刘秀平, 傅灵忠, 孙海建, 薛梦凡. 高稳定度X射线脉冲星信号模拟. 物理学报, 2013, 62(10): 109701. doi: 10.7498/aps.62.109701
    [10] 王璐, 许录平, 张华, 罗楠. 基于S变换的脉冲星辐射脉冲信号检测. 物理学报, 2013, 62(13): 139702. doi: 10.7498/aps.62.139702
    [11] 盛立志, 赵宝升, 吴建军, 周峰, 宋娟, 刘永安, 申景诗, 鄢秋荣, 邓宁勤, 胡慧君. X射线脉冲星导航系统模拟光源的研究. 物理学报, 2013, 62(12): 129702. doi: 10.7498/aps.62.129702
    [12] 周峰, 吴光敏, 赵宝升, 盛立志, 宋娟, 刘永安, 鄢秋荣, 邓宁勤, 赵建军. 基于X射线脉冲星导航的模拟调制仿真源研究. 物理学报, 2013, 62(11): 119701. doi: 10.7498/aps.62.119701
    [13] 周庆勇, 姬剑锋, 任红飞. X射线脉冲星自主导航的观测方程. 物理学报, 2013, 62(13): 139701. doi: 10.7498/aps.62.139701
    [14] 胡慧君, 赵宝升, 盛立志, 赛小锋, 鄢秋荣, 陈宝梅, 王朋. 用于脉冲星导航的X射线光子计数探测器研究. 物理学报, 2012, 61(1): 019701. doi: 10.7498/aps.61.019701
    [15] 王朋, 赵宝升, 盛立志, 胡慧君, 鄢秋荣. X射线脉冲星导航系统导航精度的研究. 物理学报, 2012, 61(20): 209702. doi: 10.7498/aps.61.209702
    [16] 张华, 许录平. 脉冲星脉冲轮廓累积的最小熵方法. 物理学报, 2011, 60(3): 039701. doi: 10.7498/aps.60.039701
    [17] 胡慧君, 赵宝升, 盛立志, 鄢秋荣. 基于X射线脉冲星导航的地面模拟系统研究. 物理学报, 2011, 60(2): 029701. doi: 10.7498/aps.60.029701
    [18] 苏哲, 许录平, 王婷. X射线脉冲星导航半物理仿真实验系统研究. 物理学报, 2011, 60(11): 119701. doi: 10.7498/aps.60.119701
    [19] 谢振华, 许录平, 倪广仁. 基于双谱的脉冲星累积脉冲轮廓时间延迟测量. 物理学报, 2008, 57(10): 6683-6688. doi: 10.7498/aps.57.6683
    [20] 仲崇霞, 杨廷高. 小波域中的维纳滤波在综合脉冲星时算法中的应用. 物理学报, 2007, 56(10): 6157-6163. doi: 10.7498/aps.56.6157
计量
  • 文章访问数:  4936
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-07
  • 修回日期:  2021-03-09
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-07-05

/

返回文章
返回