搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维简谐势阱中玻色-爱因斯坦凝聚的边界效应

袁都奇

引用本文:
Citation:

三维简谐势阱中玻色-爱因斯坦凝聚的边界效应

袁都奇

Boundary effects of Bose-Einstein condensation in a three-dimensional harmonic trap

Yuan Du-Qi
PDF
导出引用
  • 在定义特征长度的基础上,应用Euler-MacLaurin公式,研究了理想玻色气体在三维简谐势阱中玻色-爱因斯坦凝聚的边界效应. 结果表明:粒子的凝聚分数由于有限尺度和有限粒子数效应而减小,修正的凝聚分数和凝聚温度由于边界效应存在一个极大值,选择优化的最佳势阱参数,可以有效提高凝聚分数和凝聚温度;热容量的跃变存在边界效应和粒子数效应,选择合理的势阱参数时,热容量的跃变存在一个极小值. 导出了简谐势阱中有限理想玻色气体的状态方程,揭示了压强的各向异性(或各向同性)取决于简谐势频率的各向异性(或各向同性).
    By defining the characteristic length, the boundary effects of Bose-Einstein condensation in a three-dimensional harmonic trap are investigated using the Euler-MacLaurin formula. Results show that the condensed fraction of particles reduces due to the finite-size effects and the effects of finite particle number; the corrections of the condensation fraction and the condensation temperature have, respectively, a maximum value due to the boundary effect, hence it is very effective to optimize the parameters of the harmonic traps for improving the condensation fraction and the condensation temperature. In the jump of heat capacity exist the boundary effects and the effects of finite particle number, and the jump of heat capacity has a minimum because the parameters of harmonic traps are selected to be reasonable. The equation of state is derived for a finite ideal Bose gas system in a three-dimensional harmonic trap; the anisotropy (or isotropy) of the pressure is determined by the anisotropy (or isotropy) of the frequency of the harmonic potential.
    • 基金项目: 陕西省自然科学计划项目(批准号:2012JM1006)和宝鸡文理学院重点科研项目(批准号:ZK11045)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of the Shaanxi Province, China (Grant No. 2012JM1006), and the key project of Baoji University of Sciences and Arts of China (Grant No. ZK11045).
    [1]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [2]
    [3]

    Bagnato V, Pritchard D E, Kleppner D 1987 Phys. Rev. A 35 4354

    [4]
    [5]

    Grossmann S, Holthaus M 1995 Phys. Lett A 208 188

    [6]

    Ensher J R, Jin D S, Matthews M R, Wieman C E, Cornell E A 1996 Phys. Rev. Lett 77 4984

    [7]
    [8]

    Haugerud H, Haugset T, Ravndal F 1997 Phys. Leet. A 225 18

    [9]
    [10]
    [11]

    Yan Z 2000 Phys. Rev. A 61 063607

    [12]

    Sisman A, Muller I 2004 Phys. Lett. A 320 360

    [13]
    [14]
    [15]

    Sisman A 2004 J. Phys. A: Math. Gen. 37 11353

    [16]

    Pang H, Dai W S, Xie M 2006 J. Phys. A: Math. Gen. 39 2563

    [17]
    [18]
    [19]

    Dai W S, Xie M 2003 Phys. Lett. A 311 340

    [20]

    Dai W S, Xie M 2004 Phys. Rev. E 70 016103

    [21]
    [22]

    Begun V V, Gorenstein M I 2008 Phys. Rev. C 77 064903

    [23]
    [24]
    [25]

    Nash C, O'Connor D 1999 Ann. Phys. 273 72

    [26]
    [27]

    Leboeuf P, Monastra A G 2002 Ann. Phys. 297 127

    [28]

    Chamati H 2008 J. Phys. A: Math. Theor. 41 375002

    [29]
    [30]
    [31]

    Sun J R, Wei Y N, Pu F C 1995 Acta Phys. Sin. 4 542

    [32]
    [33]

    Wu S Q, Wang S J, Sun W L, Yu W L 2004 Chin. Phys. 13 510

    [34]
    [35]

    Su D G, Ou C J, Wang A Q P, Chen J C 2009 Chin. Phys B 18 5189

    [36]

    Hassan A S 2010 Phys. Lett. A 374 2106

    [37]
    [38]
    [39]

    Hassan A S, EI-Badry A M, Mohammedein A M, Ebeid M R 2012 Phys. Lett. A 376 1781

    [40]
    [41]

    Cui H T, Wang L C, Yi X X 2004 Acta Phys. Sin. 53 991 (in Chinese)[崔海涛, 王成林, 衣学喜 2004 物理学报 53 991]

    [42]
    [43]

    Ketterle W, Druten N J V 1996 Phys. Rev. A 54 656

    [44]
    [45]

    Pathria R K 1998 Phys. Rev. A 58 1490

    [46]
    [47]

    Franco D, Stefano G, Lev P P, Sandro S 1999 Rev. Mod. Phys. 71 463

    [48]

    Pathria R K 1972 Statistical Mechanics (Oxford: Pergamon) p177

    [49]
    [50]

    Yan Z J, Li M Z, Chen L X, Chen C H, Chen J C 1999 J. Phys. A: Math. Gen. 32 4069

    [51]
    [52]
    [53]

    Gerbier F, Thywissen J H, Richard S, Hugbart M, Bouyer P, Aspecr A 2004 Phys. Rev. A 70 013607

    [54]
    [55]

    Hassan A S, EI-Badry A M 2009 Physica B 404 1947

    [56]

    Yuan D Q 2010 Acta Phys. Sin. 59 5271 (in Chinese)[袁都奇 2010 物理学报 59 5271]

    [57]
    [58]
    [59]

    Yuan D Q 2011 Acta Phys. Sin. 60 060509 (in Chinese)[袁都奇 2011 物理学报 60 060509]

  • [1]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [2]
    [3]

    Bagnato V, Pritchard D E, Kleppner D 1987 Phys. Rev. A 35 4354

    [4]
    [5]

    Grossmann S, Holthaus M 1995 Phys. Lett A 208 188

    [6]

    Ensher J R, Jin D S, Matthews M R, Wieman C E, Cornell E A 1996 Phys. Rev. Lett 77 4984

    [7]
    [8]

    Haugerud H, Haugset T, Ravndal F 1997 Phys. Leet. A 225 18

    [9]
    [10]
    [11]

    Yan Z 2000 Phys. Rev. A 61 063607

    [12]

    Sisman A, Muller I 2004 Phys. Lett. A 320 360

    [13]
    [14]
    [15]

    Sisman A 2004 J. Phys. A: Math. Gen. 37 11353

    [16]

    Pang H, Dai W S, Xie M 2006 J. Phys. A: Math. Gen. 39 2563

    [17]
    [18]
    [19]

    Dai W S, Xie M 2003 Phys. Lett. A 311 340

    [20]

    Dai W S, Xie M 2004 Phys. Rev. E 70 016103

    [21]
    [22]

    Begun V V, Gorenstein M I 2008 Phys. Rev. C 77 064903

    [23]
    [24]
    [25]

    Nash C, O'Connor D 1999 Ann. Phys. 273 72

    [26]
    [27]

    Leboeuf P, Monastra A G 2002 Ann. Phys. 297 127

    [28]

    Chamati H 2008 J. Phys. A: Math. Theor. 41 375002

    [29]
    [30]
    [31]

    Sun J R, Wei Y N, Pu F C 1995 Acta Phys. Sin. 4 542

    [32]
    [33]

    Wu S Q, Wang S J, Sun W L, Yu W L 2004 Chin. Phys. 13 510

    [34]
    [35]

    Su D G, Ou C J, Wang A Q P, Chen J C 2009 Chin. Phys B 18 5189

    [36]

    Hassan A S 2010 Phys. Lett. A 374 2106

    [37]
    [38]
    [39]

    Hassan A S, EI-Badry A M, Mohammedein A M, Ebeid M R 2012 Phys. Lett. A 376 1781

    [40]
    [41]

    Cui H T, Wang L C, Yi X X 2004 Acta Phys. Sin. 53 991 (in Chinese)[崔海涛, 王成林, 衣学喜 2004 物理学报 53 991]

    [42]
    [43]

    Ketterle W, Druten N J V 1996 Phys. Rev. A 54 656

    [44]
    [45]

    Pathria R K 1998 Phys. Rev. A 58 1490

    [46]
    [47]

    Franco D, Stefano G, Lev P P, Sandro S 1999 Rev. Mod. Phys. 71 463

    [48]

    Pathria R K 1972 Statistical Mechanics (Oxford: Pergamon) p177

    [49]
    [50]

    Yan Z J, Li M Z, Chen L X, Chen C H, Chen J C 1999 J. Phys. A: Math. Gen. 32 4069

    [51]
    [52]
    [53]

    Gerbier F, Thywissen J H, Richard S, Hugbart M, Bouyer P, Aspecr A 2004 Phys. Rev. A 70 013607

    [54]
    [55]

    Hassan A S, EI-Badry A M 2009 Physica B 404 1947

    [56]

    Yuan D Q 2010 Acta Phys. Sin. 59 5271 (in Chinese)[袁都奇 2010 物理学报 59 5271]

    [57]
    [58]
    [59]

    Yuan D Q 2011 Acta Phys. Sin. 60 060509 (in Chinese)[袁都奇 2011 物理学报 60 060509]

  • [1] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波. 物理学报, 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [2] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学. 物理学报, 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [3] 袁都奇. 囚禁有限unitary费米气体的热力学性质. 物理学报, 2016, 65(18): 180302. doi: 10.7498/aps.65.180302
    [4] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究. 物理学报, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [5] 王建忠, 曹辉, 豆福全. 玻色-爱因斯坦凝聚体Rosen-Zener跃迁中的多体量子涨落效应 . 物理学报, 2012, 61(22): 220305. doi: 10.7498/aps.61.220305
    [6] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌. 物理学报, 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [7] 黄芳, 李海彬. 双势阱中玻色-爱因斯坦凝聚的绝热隧穿. 物理学报, 2011, 60(2): 020303. doi: 10.7498/aps.60.020303
    [8] 严冬, 宋立军, 陈殿伟. 两分量玻色-爱因斯坦凝聚系统的自旋压缩. 物理学报, 2009, 58(6): 3679-3684. doi: 10.7498/aps.58.3679
    [9] 宗丰德, 杨阳, 张解放. 外势场作用下的玻色-爱因斯坦凝聚啁啾孤子的演化与操控. 物理学报, 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670
    [10] 曲春雷, 赵清. 周期驱动玻色-爱因斯坦凝聚系统的棘齿效应. 物理学报, 2009, 58(7): 4390-4395. doi: 10.7498/aps.58.4390
    [11] 王志霞, 张喜和, 沈 柯. 玻色-爱因斯坦凝聚中的混沌反控制. 物理学报, 2008, 57(12): 7586-7590. doi: 10.7498/aps.57.7586
    [12] 房永翠, 杨志安, 杨丽云. 对称双势阱玻色-爱因斯坦凝聚系统在周期驱动下的动力学相变及其量子纠缠熵表示. 物理学报, 2008, 57(2): 661-666. doi: 10.7498/aps.57.661
    [13] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性. 物理学报, 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [14] 臧小飞, 李菊萍, 谭 磊. 偶极-偶极相互作用下双势阱中旋量玻色-爱因斯坦凝聚磁化率的非线性动力学性质. 物理学报, 2007, 56(8): 4348-4352. doi: 10.7498/aps.56.4348
    [15] 刘泽专, 杨志安. 噪声对双势阱玻色-爱因斯坦凝聚体系自俘获现象的影响. 物理学报, 2007, 56(3): 1245-1252. doi: 10.7498/aps.56.1245
    [16] 余学才, 叶玉堂, 程 琳. 势阱中玻色-爱因斯坦凝聚气体的势场有效性和粒子数极限判据. 物理学报, 2006, 55(2): 551-554. doi: 10.7498/aps.55.551
    [17] 王冠芳, 傅立斌, 赵 鸿, 刘 杰. 双势阱玻色-爱因斯坦凝聚体系的自俘获现象及其周期调制效应. 物理学报, 2005, 54(11): 5003-5013. doi: 10.7498/aps.54.5003
    [18] 崔海涛, 王林成, 衣学喜. 低维俘获原子的玻色-爱因斯坦凝聚中的有限粒子数效应. 物理学报, 2004, 53(4): 991-995. doi: 10.7498/aps.53.991
    [19] 周 明, 方家元, 黄春佳. 相互作用原子玻色-爱因斯坦凝聚体诱导的光场压缩效应. 物理学报, 2003, 52(8): 1916-1919. doi: 10.7498/aps.52.1916
    [20] 闫珂柱, 谭维翰. 简谐势阱中具有吸引相互作用原子体系的玻色-爱因斯坦凝聚. 物理学报, 2000, 49(10): 1909-1911. doi: 10.7498/aps.49.1909
计量
  • 文章访问数:  3672
  • PDF下载量:  340
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-01-05
  • 修回日期:  2014-05-17
  • 刊出日期:  2014-09-05

三维简谐势阱中玻色-爱因斯坦凝聚的边界效应

  • 1. 宝鸡文理学院物理与信息技术系, 宝鸡 721016
    基金项目: 陕西省自然科学计划项目(批准号:2012JM1006)和宝鸡文理学院重点科研项目(批准号:ZK11045)资助的课题.

摘要: 在定义特征长度的基础上,应用Euler-MacLaurin公式,研究了理想玻色气体在三维简谐势阱中玻色-爱因斯坦凝聚的边界效应. 结果表明:粒子的凝聚分数由于有限尺度和有限粒子数效应而减小,修正的凝聚分数和凝聚温度由于边界效应存在一个极大值,选择优化的最佳势阱参数,可以有效提高凝聚分数和凝聚温度;热容量的跃变存在边界效应和粒子数效应,选择合理的势阱参数时,热容量的跃变存在一个极小值. 导出了简谐势阱中有限理想玻色气体的状态方程,揭示了压强的各向异性(或各向同性)取决于简谐势频率的各向异性(或各向同性).

English Abstract

参考文献 (59)

目录

    /

    返回文章
    返回