搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强阻尼广义sine-Gordon方程特征问题的变分迭代法

许永红 石兰芳 莫嘉琪

引用本文:
Citation:

强阻尼广义sine-Gordon方程特征问题的变分迭代法

许永红, 石兰芳, 莫嘉琪

The variational iteration method for characteristic problem of strong damping generalized sine-Gordon equation

Xu Yong-Hong, Shi Lan-Fang, Mo Jia-Qi
PDF
导出引用
  • 研究了在数学、力学中广泛出现的一类非线性强阻尼广义sine-Gordon扰动微分方程问题. 首先, 引入行波变换, 求出退化方程的精确解. 再构造一个泛函, 创建了一个变分迭代算法, 最后, 求出原非线性强阻尼广义sine-Gordon扰动微分方程问题的近似行波解析解. 用变分迭代法可得到的各次近似解, 具有便于求解、精度高等特点. 求得的近似解析解弥补了单纯用数值方法的模拟解的不足.
    A class of nonlinear strong damping sine-Gordon disturbed evolution differential equation is studied which appears widely in mathematics and mechanics. Firstly, we introduce a traveling wave transformation, and obtain the exact solution of degenerate equation. Then a functional calculating method for variational iteration is constructed, thus an iterative expansion is found. Finally, the approximate traveling wave analytic solutions for the original strong damping generalized sine-Gordon disturbed evolution equation are found. The arbitrary order approximate solutions, and the simple variational iteration method are obtained with higher accuracy. The approximate analytic solution can make up for the imperfection of the simple numerical simulation solution.
    • 基金项目: 国家自然科学基金(批准号: 11202106), 中央高校基本科研业务费专项资金(批准号:. 2232012D3-34), 安徽高校省级自然科学研究项目(批准号: KJ2014A151)和江苏省自然科学基金(批准号: 13KJB170016)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11202106), the Fundamental Research Funds for the Central Universities, China (Grant No. 2232012D3-34), the Natural Science Foundation of the Education Department of Anhui Province, China (Grant No. KJ2014A151) and the Natural Sciences Foundation from the Universities of Jiangsu Province, China (Grant No. 13KJB170016).
    [1]

    Parkes E J 2008 Chaos Solitons Fractals 38 154

    [2]

    Sirendaoreji J S 2003 Phys. Lett. A 309 387

    [3]

    McPhaden M J, Zhang D 2002 Nature 415 603

    [4]

    Gu D F 1997 Science 275 805

    [5]

    Wu J P 2011 Chin. Phys. Lett. 28 060207

    [6]

    Zuo J M, Zhang Y M 2011 Chin. Phys. B 20 010205

    [7]

    Pang J, Jin L H, Zhao Q 2012 Acta Phys. Sin. 61 140201 (in Chinese) [庞晶, 靳玲花, 赵强 2012 物理学报 61 140201]

    [8]

    Xin P, Liu X Q, Zhang L L 2011 Chin. Phys. Lett. 28 020201

    [9]

    Li Ning, Liu Xi 2013 Acta Phys. Sin. 62 160203 (in Chinese) [李宁, 刘希 2013 物理学报 62 160203]

    [10]

    Xu Y H, Lin W T, Xu H, Yao J S, Mo J Q 2012 J. Lanzhou Univ. 48 100 (in Chinese) [许永红, 林万涛, 徐惠, 姚静荪, 莫嘉琪 2012 兰州大学学报 48 100]

    [11]

    Shi L F, Lin W T, Lin Y H, Mo J Q 2013 Acta. Phys. Sin. 62 010201 (in Chinese) [石兰芳, 林万涛, 林一骅, 莫嘉琪 2013 物理学报 62 010201]

    [12]

    Mo Jiaqi 2009 Science in China, Ser. G 52 1007

    [13]

    Mo J Q, Chen X F 2010 Chin. Phys. B 19 100203

    [14]

    Mo J Q 2010 Chin. Phys. 19 010203

    [15]

    Mo J Q, Lin Y H, Lin W T 2010 Chin. Phys. 19 030202

    [16]

    2011 Commun Theor. Phy. 55 387

    [17]

    Mo J Q, Lin W T 2011 J. Sys. Sci. Complexity 24 271

    [18]

    Mo J Q, Lin W T, Lin Y H 2011 Chin. Phys. B 20 070205

    [19]

    Mo J Q, Lin W T, Lin Y H 2011 Chin. Phys. B 20 010208

    [20]

    He J H 2002 Approximate Nonlinear Analytical Methods in Engineering and Sciences (Zhengzhou: Henan Science and Technology Press) (in Chinese) [何吉欢 2002 工程和科学计算中的近似非线性分析方法 郑州: 河南科学技术出版社]

    [21]

    Lebedev L P, Cloud M J 2003 The Calculus of Variations and Functional Analysis with Optimal Control and Applications in Mechanics (New York: World Scientific)

    [22]

    de Jager E M, Jiang F R 1996 The Theory of Singular Perturbation (Amsterdam: North-Holland Publishing Co)

    [23]

    Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problem, (Basel: Birkhauserm Verlag AG)

    [24]

    He J H 1999 J. Non-Linear Mech 34 699

    [25]

    He J H 2000 Appl. Math. Comput 114 115

    [26]

    He J H 2004 Chaos, Solitons & Fractals 19 847

    [27]

    He J H, Wu X H 2006 Chaos, Solitons & Fractals 29 108

    [28]

    He J H 2007 Chaos, Solitons & Fractals 34 1430

    [29]

    He J H, Wu G C 2010 Nonlinear Sci. Lett. A 1 1

    [30]

    He J H 2010 J. Nonlinear Scoences and Nimweical Simulation 11 555

    [31]

    Wang Q, Fu F H 2012 Int. J. Engineering and Manufacturing 2 36

  • [1]

    Parkes E J 2008 Chaos Solitons Fractals 38 154

    [2]

    Sirendaoreji J S 2003 Phys. Lett. A 309 387

    [3]

    McPhaden M J, Zhang D 2002 Nature 415 603

    [4]

    Gu D F 1997 Science 275 805

    [5]

    Wu J P 2011 Chin. Phys. Lett. 28 060207

    [6]

    Zuo J M, Zhang Y M 2011 Chin. Phys. B 20 010205

    [7]

    Pang J, Jin L H, Zhao Q 2012 Acta Phys. Sin. 61 140201 (in Chinese) [庞晶, 靳玲花, 赵强 2012 物理学报 61 140201]

    [8]

    Xin P, Liu X Q, Zhang L L 2011 Chin. Phys. Lett. 28 020201

    [9]

    Li Ning, Liu Xi 2013 Acta Phys. Sin. 62 160203 (in Chinese) [李宁, 刘希 2013 物理学报 62 160203]

    [10]

    Xu Y H, Lin W T, Xu H, Yao J S, Mo J Q 2012 J. Lanzhou Univ. 48 100 (in Chinese) [许永红, 林万涛, 徐惠, 姚静荪, 莫嘉琪 2012 兰州大学学报 48 100]

    [11]

    Shi L F, Lin W T, Lin Y H, Mo J Q 2013 Acta. Phys. Sin. 62 010201 (in Chinese) [石兰芳, 林万涛, 林一骅, 莫嘉琪 2013 物理学报 62 010201]

    [12]

    Mo Jiaqi 2009 Science in China, Ser. G 52 1007

    [13]

    Mo J Q, Chen X F 2010 Chin. Phys. B 19 100203

    [14]

    Mo J Q 2010 Chin. Phys. 19 010203

    [15]

    Mo J Q, Lin Y H, Lin W T 2010 Chin. Phys. 19 030202

    [16]

    2011 Commun Theor. Phy. 55 387

    [17]

    Mo J Q, Lin W T 2011 J. Sys. Sci. Complexity 24 271

    [18]

    Mo J Q, Lin W T, Lin Y H 2011 Chin. Phys. B 20 070205

    [19]

    Mo J Q, Lin W T, Lin Y H 2011 Chin. Phys. B 20 010208

    [20]

    He J H 2002 Approximate Nonlinear Analytical Methods in Engineering and Sciences (Zhengzhou: Henan Science and Technology Press) (in Chinese) [何吉欢 2002 工程和科学计算中的近似非线性分析方法 郑州: 河南科学技术出版社]

    [21]

    Lebedev L P, Cloud M J 2003 The Calculus of Variations and Functional Analysis with Optimal Control and Applications in Mechanics (New York: World Scientific)

    [22]

    de Jager E M, Jiang F R 1996 The Theory of Singular Perturbation (Amsterdam: North-Holland Publishing Co)

    [23]

    Barbu L, Morosanu G 2007 Singularly Perturbed Boundary-Value Problem, (Basel: Birkhauserm Verlag AG)

    [24]

    He J H 1999 J. Non-Linear Mech 34 699

    [25]

    He J H 2000 Appl. Math. Comput 114 115

    [26]

    He J H 2004 Chaos, Solitons & Fractals 19 847

    [27]

    He J H, Wu X H 2006 Chaos, Solitons & Fractals 29 108

    [28]

    He J H 2007 Chaos, Solitons & Fractals 34 1430

    [29]

    He J H, Wu G C 2010 Nonlinear Sci. Lett. A 1 1

    [30]

    He J H 2010 J. Nonlinear Scoences and Nimweical Simulation 11 555

    [31]

    Wang Q, Fu F H 2012 Int. J. Engineering and Manufacturing 2 36

  • [1] 郑来运, 赵秉新, 杨建青. 弱Soret效应混合流体对流系统的分岔与非线性演化. 物理学报, 2020, 69(7): 074701. doi: 10.7498/aps.69.20191836
    [2] 宁利中, 胡彪, 宁碧波, 田伟利. Poiseuille-Rayleigh-Bnard流动中对流斑图的分区和成长. 物理学报, 2016, 65(21): 214401. doi: 10.7498/aps.65.214401
    [3] 套格图桑, 伊丽娜. sine-Gordon型方程的无穷序列新解. 物理学报, 2014, 63(21): 210202. doi: 10.7498/aps.63.210202
    [4] 欧阳成, 姚静荪, 石兰芳, 莫嘉琪. 一类尘埃等离子体孤波解. 物理学报, 2014, 63(11): 110203. doi: 10.7498/aps.63.110203
    [5] 石兰芳, 朱敏, 周先春, 汪维刚, 莫嘉琪. 一类非线性发展方程孤立子行波解. 物理学报, 2014, 63(13): 130201. doi: 10.7498/aps.63.130201
    [6] 赵龙, 杨继平, 郑艳红. 神经元网络螺旋波诱发机理研究. 物理学报, 2013, 62(2): 028701. doi: 10.7498/aps.62.028701
    [7] 姚熊亮, 叶曦, 张阿漫. 行波驱动下空泡在可压缩流场中的运动特性研究. 物理学报, 2013, 62(24): 244701. doi: 10.7498/aps.62.244701
    [8] 高美茹, 陈怀堂. (2+1)维sine-Gordon方程的三种函数混合解 . 物理学报, 2012, 61(22): 220509. doi: 10.7498/aps.61.220509
    [9] 套格图桑. sine-Gordon型方程的无穷序列新精确解. 物理学报, 2011, 60(7): 070203. doi: 10.7498/aps.60.070203
    [10] 张建文, 李金峰, 吴润衡. 强阻尼非线性热弹耦合杆系统的全局吸引子. 物理学报, 2011, 60(7): 070205. doi: 10.7498/aps.60.070205
    [11] 苏军, 徐伟, 段东海, 徐根玖. 一类带自相容源的sine-Gordon方程新的显式精确解. 物理学报, 2011, 60(11): 110203. doi: 10.7498/aps.60.110203
    [12] 套格图桑, 斯仁道尔吉. (n+1)维双sine-Gordon方程的新精确解. 物理学报, 2010, 59(8): 5194-5201. doi: 10.7498/aps.59.5194
    [13] 莫嘉琪. 一类广义Sine-Gordon扰动方程的解析解. 物理学报, 2009, 58(5): 2930-2933. doi: 10.7498/aps.58.2930
    [14] 宁利中, 齐昕, 余荔, 周洋. 混合流体Rayleigh-Benard行波对流中的缺陷结构. 物理学报, 2009, 58(4): 2528-2534. doi: 10.7498/aps.58.2528
    [15] 张建文, 王旦霞, 吴润衡. 一类广义强阻尼Sine-Gordon方程的整体解. 物理学报, 2008, 57(4): 2021-2025. doi: 10.7498/aps.57.2021
    [16] 毛杰健, 杨建荣. 变系数KP方程新的类孤波解和解析解. 物理学报, 2005, 54(11): 4999-5002. doi: 10.7498/aps.54.4999
    [17] 唐 翌, 颜家壬, 张凯旺, 陈振华. Sine-Gordon方程的微扰问题. 物理学报, 1999, 48(3): 480-484. doi: 10.7498/aps.48.480
    [18] 许伯威, 陈志坚, 丁国辉, 章豫梅. sine-Gordon系统中的相图. 物理学报, 1995, 44(2): 189-195. doi: 10.7498/aps.44.189
    [19] 许伯威, 章豫梅, 卢文发. sine-Gordon模型与高斯波泛函方法. 物理学报, 1993, 42(10): 1573-1579. doi: 10.7498/aps.42.1573
    [20] 王珮, 侯伯元, 侯伯宇, 郭汉英. 手征模型的对偶性及其与sine-Gordon方程的几何关联. 物理学报, 1984, 33(3): 294-301. doi: 10.7498/aps.33.294
计量
  • 文章访问数:  3570
  • PDF下载量:  648
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-24
  • 修回日期:  2014-08-14
  • 刊出日期:  2015-01-05

强阻尼广义sine-Gordon方程特征问题的变分迭代法

  • 1. 蚌埠学院数理系, 蚌埠 233030;
  • 2. 南京信息工程大学数学与统计学院, 南京 210044;
  • 3. 安徽师范大学数学系, 芜湖 241003
    基金项目: 国家自然科学基金(批准号: 11202106), 中央高校基本科研业务费专项资金(批准号:. 2232012D3-34), 安徽高校省级自然科学研究项目(批准号: KJ2014A151)和江苏省自然科学基金(批准号: 13KJB170016)资助的课题.

摘要: 研究了在数学、力学中广泛出现的一类非线性强阻尼广义sine-Gordon扰动微分方程问题. 首先, 引入行波变换, 求出退化方程的精确解. 再构造一个泛函, 创建了一个变分迭代算法, 最后, 求出原非线性强阻尼广义sine-Gordon扰动微分方程问题的近似行波解析解. 用变分迭代法可得到的各次近似解, 具有便于求解、精度高等特点. 求得的近似解析解弥补了单纯用数值方法的模拟解的不足.

English Abstract

参考文献 (31)

目录

    /

    返回文章
    返回