搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双频驱动下分数阶过阻尼马达在空间对称势中的定向输运

谢天婷 张路 王飞 罗懋康

引用本文:
Citation:

双频驱动下分数阶过阻尼马达在空间对称势中的定向输运

谢天婷, 张路, 王飞, 罗懋康

Direct transport of fractional overdamped deterministic motors in spatial symmetric potentials driven by biharmonic forces

Xie Tian-Ting, Zhang Lu, Wang Fei, Luo Mao-Kang
PDF
导出引用
  • 从阻尼对历史加速度记忆的角度出发, 对阶数p (0, 2)的分数阶阻尼物理意义给出了统一的合理解释, 具体分析了不同阶数下的阻尼记忆特性, 在此基础上研究了空间对称势中分数阶单分子马达在无偏置双频简谐激励下的输运问题, 通过数值方法分析了输运速度与模型各参数的关系以及分数阶阻尼对输运现象的影响机理. 研究表明, 在不同阶数下历史加速度对当前时刻阻尼力的贡献与距当前时刻的时间长度呈单增或单减关系; 在适当参数下输运速度随空间势深和外力频率的增大均会出现广义共振现象, 特别地, 在存在输运且阻尼阶数较大的情况下输运速度随势深增大出现阶梯状变化而与外力频率呈正比例关系; 输运速度及方向对外力波形十分敏感, 在不同外力下阻尼力的记忆性会分别促进或阻碍粒子跃迁, 甚至引发与整数阶方向相反的定向流.
    Physical significance of fractional damping for order 0 p 2 is demonstrated from the perspective that it can be explained as the memory of acceleration. Based on Caputo's fractional derivatives, the transport phenomenon of fractional overdamped deterministic motors in spatial symmetric potentials driven by biharmonic forces is investigated numerically. Relationships between transport velocity and model parameters are analyzed. The effect of fractional order is discussed in detail. Research shows that the contribution of historical acceleration increases or decreases monotonously with the historical moment varying with different fractional orders. With certain parameters the transport velocity can show generalized resonance when the spatial potential depth or the external force frequency varies. Furthermore, for some large orders, the velocity varies in step with the variation of potential depth and is in a direct proportional to the frequency if there is transport. Effect of fractional damping is intimately linked with the shape of the force. The memory of damping force can promote or inhibit the particle transport under different conditions, thus triggering abundant transport behaviors.
    • 基金项目: 国家自然科学基金(批准号:11171238)和电子信息控制重点实验室项目(批准号:2013035)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11171238) and the Science and Technology on Electronic Information Control Laboratory Program, China (Grant No. 2013035).
    [1]

    Reimann P 2002 Phys. Rep. 361 57

    [2]

    Jung P, Kissner J G, Hanggi P 1996 Phys. Rev. Lett. 76 3436

    [3]

    Astumian R D 1997 Science 276 917

    [4]

    Mateos J L 2000 Phys. Rev. Lett. 84 258

    [5]

    Tu Z C 2012 Chin. Phys. B 21 020513

    [6]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701

    [7]

    Falo F, Martinez P J, Mazo J J, Cilla S 1999 Europhys. Lett. 45 700

    [8]

    Csahók Z, Family F, Vicsek T 1997 Phys. Rev. E 55 5179

    [9]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [10]

    Gao T F, Liu F S, Chen J C 2012 Chin. Phys. B 21 020502

    [11]

    Zheng Z G, Li X W 2001 Commun. Theor. Phys. 36 151

    [12]

    Parrondo J M R, de Cisneros B J 2002 Appl. Phys. A 75 179

    [13]

    Hanggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387

    [14]

    Reguera D, Rubi J M 2001 Phys. Rev. E 64 061106

    [15]

    Reguera D, Schmid G, Burada P S, Rubi J M, Reimann P, Hanggi P 2006 Phys. Rev. Lett. 96 130603

    [16]

    Martens S, Schmid G, Schimansky-Geier L, Hanggi P 2011 Phys. Rev. E 83 051135

    [17]

    Malgaretti P, Pagonabarraga I, Rubi J M 2013 J. Chem. Phys. 138 194906

    [18]

    Liu J L, He J Z 2010 Chin. Phys. B 19 030504

    [19]

    Zeng C H, Wang H, Wang H T 2011 Chin. Phys. B 20 050502

    [20]

    Ai B Q, Wu J C 2013 J. Chem. Phys. 139 034114

    [21]

    Flach S, Yevtushenko O, Zolotaryuk Y 2000 Phys. Rev. Lett. 84 11

    [22]

    Quintero N R, Jose A, Cuesta J A, Alvarez-Nodarse R 2010 Phys. Rev. E 81 030102

    [23]

    Savel'ev S, Marchesoni F, Hanggi P, Nori F 2004 Europhys. Lett. 67 179

    [24]

    Borromeo M, Marchesoni F 2006 Phys. Rev. E 73 016142

    [25]

    Machura L, Kostur M, Luczka J 2010 Chem. Phys. 375 445

    [26]

    Brown M, Renzoni F 2008 Phys. Rev. A 77 033405

    [27]

    Chen W, Sun H G, Li X C 2010 Fractional Derivative Modeling of Mechanical and Engineering Problems (Beijing: Science Press) p125 (in Chinese) [陈文, 孙洪广, 李西成 2010 机械和工程问题的分数阶导数模型 (北京: 科学出版社)第125页]

    [28]

    Hilfer R 2003 Applications of Fractional Calculus in Physics (Singapore: World Scientific)

    [29]

    Torvik P J, Bagley R L 1984 J. Appl. Mech. 51 294

    [30]

    Gao S L, Zhong S C, Wei K, Ma H 2012 Acta Phys. Sin. 61 100502 (in Chinese) [高仕龙, 钟苏川, 韦鹍, 马洪 2012 物理学报 61 100502]

    [31]

    Shen S J, Liu F W 2004 J. Xiamen Univ. (Nat. Sci.) 43 306 (in Chinese) [沈淑君, 刘发旺2004 厦门大学学报 (自然科学版) 43 306]

    [32]

    del-Castillo-Negrete D, Gonchar V Y, Chechkin A V 2008 Physica A 387 6693

    [33]

    Ai B Q, He Y F 2010 J. Chem. Phys. 132 094504

    [34]

    Ai B Q, He Y F, Zhong W R 2010 Phys. Rev. E 82 061102

    [35]

    Risau-Gusman S, Ibanez S, Bouzat S 2013 Phys. Rev. E 87 022105

    [36]

    Ai B Q, Shao Z G, Zhong W R 2012 J. Chem. Phys. 137 174101

    [37]

    Zhou X W, Lin L F, Ma H, Luo M K 2014 Acta Phys. Sin. 63 110501 (in Chinese) [周兴旺, 林丽烽, 马洪, 罗懋康 2014 物理学报 63 110501]

    [38]

    Tu Z, Lai L, Luo M K 2014 Acta Phys. Sin. 63 120503 (in Chinese) [屠浙, 赖莉, 罗懋康 2014 物理学报 63 120503]

    [39]

    Podlubny I 1999 Fractional Differential Equations (San Diegop: Academic Press)

    [40]

    Zheng Z G 2004 Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems (Beijing: Higher Education Press) (in Chinese) [郑志刚2004耦合非线性系统的时空动力学与合作行为(北京: 高等教育出版社)]

    [41]

    Petras I 2011 Fractional-Order Nonlinear Systerms Modeling, Analysis and Simulation (1st Ed. ) (Beijing: Higher Education Press) p19

  • [1]

    Reimann P 2002 Phys. Rep. 361 57

    [2]

    Jung P, Kissner J G, Hanggi P 1996 Phys. Rev. Lett. 76 3436

    [3]

    Astumian R D 1997 Science 276 917

    [4]

    Mateos J L 2000 Phys. Rev. Lett. 84 258

    [5]

    Tu Z C 2012 Chin. Phys. B 21 020513

    [6]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701

    [7]

    Falo F, Martinez P J, Mazo J J, Cilla S 1999 Europhys. Lett. 45 700

    [8]

    Csahók Z, Family F, Vicsek T 1997 Phys. Rev. E 55 5179

    [9]

    Ai B Q, He Y F, Zhong W R 2011 Phys. Rev. E 83 051106

    [10]

    Gao T F, Liu F S, Chen J C 2012 Chin. Phys. B 21 020502

    [11]

    Zheng Z G, Li X W 2001 Commun. Theor. Phys. 36 151

    [12]

    Parrondo J M R, de Cisneros B J 2002 Appl. Phys. A 75 179

    [13]

    Hanggi P, Marchesoni F 2009 Rev. Mod. Phys. 81 387

    [14]

    Reguera D, Rubi J M 2001 Phys. Rev. E 64 061106

    [15]

    Reguera D, Schmid G, Burada P S, Rubi J M, Reimann P, Hanggi P 2006 Phys. Rev. Lett. 96 130603

    [16]

    Martens S, Schmid G, Schimansky-Geier L, Hanggi P 2011 Phys. Rev. E 83 051135

    [17]

    Malgaretti P, Pagonabarraga I, Rubi J M 2013 J. Chem. Phys. 138 194906

    [18]

    Liu J L, He J Z 2010 Chin. Phys. B 19 030504

    [19]

    Zeng C H, Wang H, Wang H T 2011 Chin. Phys. B 20 050502

    [20]

    Ai B Q, Wu J C 2013 J. Chem. Phys. 139 034114

    [21]

    Flach S, Yevtushenko O, Zolotaryuk Y 2000 Phys. Rev. Lett. 84 11

    [22]

    Quintero N R, Jose A, Cuesta J A, Alvarez-Nodarse R 2010 Phys. Rev. E 81 030102

    [23]

    Savel'ev S, Marchesoni F, Hanggi P, Nori F 2004 Europhys. Lett. 67 179

    [24]

    Borromeo M, Marchesoni F 2006 Phys. Rev. E 73 016142

    [25]

    Machura L, Kostur M, Luczka J 2010 Chem. Phys. 375 445

    [26]

    Brown M, Renzoni F 2008 Phys. Rev. A 77 033405

    [27]

    Chen W, Sun H G, Li X C 2010 Fractional Derivative Modeling of Mechanical and Engineering Problems (Beijing: Science Press) p125 (in Chinese) [陈文, 孙洪广, 李西成 2010 机械和工程问题的分数阶导数模型 (北京: 科学出版社)第125页]

    [28]

    Hilfer R 2003 Applications of Fractional Calculus in Physics (Singapore: World Scientific)

    [29]

    Torvik P J, Bagley R L 1984 J. Appl. Mech. 51 294

    [30]

    Gao S L, Zhong S C, Wei K, Ma H 2012 Acta Phys. Sin. 61 100502 (in Chinese) [高仕龙, 钟苏川, 韦鹍, 马洪 2012 物理学报 61 100502]

    [31]

    Shen S J, Liu F W 2004 J. Xiamen Univ. (Nat. Sci.) 43 306 (in Chinese) [沈淑君, 刘发旺2004 厦门大学学报 (自然科学版) 43 306]

    [32]

    del-Castillo-Negrete D, Gonchar V Y, Chechkin A V 2008 Physica A 387 6693

    [33]

    Ai B Q, He Y F 2010 J. Chem. Phys. 132 094504

    [34]

    Ai B Q, He Y F, Zhong W R 2010 Phys. Rev. E 82 061102

    [35]

    Risau-Gusman S, Ibanez S, Bouzat S 2013 Phys. Rev. E 87 022105

    [36]

    Ai B Q, Shao Z G, Zhong W R 2012 J. Chem. Phys. 137 174101

    [37]

    Zhou X W, Lin L F, Ma H, Luo M K 2014 Acta Phys. Sin. 63 110501 (in Chinese) [周兴旺, 林丽烽, 马洪, 罗懋康 2014 物理学报 63 110501]

    [38]

    Tu Z, Lai L, Luo M K 2014 Acta Phys. Sin. 63 120503 (in Chinese) [屠浙, 赖莉, 罗懋康 2014 物理学报 63 120503]

    [39]

    Podlubny I 1999 Fractional Differential Equations (San Diegop: Academic Press)

    [40]

    Zheng Z G 2004 Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems (Beijing: Higher Education Press) (in Chinese) [郑志刚2004耦合非线性系统的时空动力学与合作行为(北京: 高等教育出版社)]

    [41]

    Petras I 2011 Fractional-Order Nonlinear Systerms Modeling, Analysis and Simulation (1st Ed. ) (Beijing: Higher Education Press) p19

  • [1] 高飞, 胡道楠, 童恒庆, 王传美. 分数阶Willis环脑迟发性动脉瘤时滞系统混沌分析. 物理学报, 2018, 67(15): 150501. doi: 10.7498/aps.67.20180262
    [2] 胡串, 李志军, 陈茜茜. 负参数空间分数阶Chua系统的动力学行为及实验验证. 物理学报, 2017, 66(23): 230502. doi: 10.7498/aps.66.230502
    [3] 谭程, 梁志珊, 张举丘. 电感电流伪连续模式下分数阶Boost变换器的非线性控制. 物理学报, 2014, 63(20): 200502. doi: 10.7498/aps.63.200502
    [4] 谭程, 梁志珊. 电感电流伪连续模式下Boost变换器的分数阶建模与分析. 物理学报, 2014, 63(7): 070502. doi: 10.7498/aps.63.070502
    [5] 刘式达, 付遵涛, 刘式适. 间歇湍流的分数阶动力学. 物理学报, 2014, 63(7): 074701. doi: 10.7498/aps.63.074701
    [6] 李睿, 张广军, 姚宏, 朱涛, 张志浩. 参数不确定的分数阶混沌系统广义错位延时投影同步. 物理学报, 2014, 63(23): 230501. doi: 10.7498/aps.63.230501
    [7] 王斌, 吴超, 朱德兰. 一个新的分数阶混沌系统的翼倍增及滑模同步. 物理学报, 2013, 62(23): 230506. doi: 10.7498/aps.62.230506
    [8] 刘福才, 李俊义, 臧秀凤. 基于自适应主动及滑模控制的分数阶超混沌系统异结构反同步. 物理学报, 2011, 60(3): 030504. doi: 10.7498/aps.60.030504
    [9] 胡建兵, 章国安, 赵灵冬, 曾金全. 间歇同步分数阶统一混沌系统. 物理学报, 2011, 60(6): 060504. doi: 10.7498/aps.60.060504
    [10] 赵灵冬, 胡建兵, 包志华, 章国安, 徐晨, 张士兵. 分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步. 物理学报, 2011, 60(10): 100507. doi: 10.7498/aps.60.100507
    [11] 黄丽莲, 何少杰. 分数阶状态空间系统的稳定性分析及其在分数阶混沌控制中的应用. 物理学报, 2011, 60(4): 044703. doi: 10.7498/aps.60.044703
    [12] 刘勇, 谢勇. 分数阶FitzHugh-Nagumo模型神经元的动力学特性及其同步. 物理学报, 2010, 59(3): 2147-2155. doi: 10.7498/aps.59.2147
    [13] 赵灵冬, 胡建兵, 刘旭辉. 参数未知的分数阶超混沌Lorenz系统的自适应追踪控制与同步. 物理学报, 2010, 59(4): 2305-2309. doi: 10.7498/aps.59.2305
    [14] 阎晓妹, 刘丁. 基于最小二乘支持向量机的分数阶混沌系统控制. 物理学报, 2010, 59(5): 3043-3048. doi: 10.7498/aps.59.3043
    [15] 张若洵, 杨世平. 分数阶共轭Chen混沌系统中的混沌及其电路实验仿真. 物理学报, 2009, 58(5): 2957-2962. doi: 10.7498/aps.58.2957
    [16] 胡建兵, 韩焱, 赵灵冬. 自适应同步参数未知的异结构分数阶超混沌系统. 物理学报, 2009, 58(3): 1441-1445. doi: 10.7498/aps.58.1441
    [17] 胡建兵, 韩焱, 赵灵冬. 一种新的分数阶系统稳定理论及在back-stepping方法同步分数阶混沌系统中的应用. 物理学报, 2009, 58(4): 2235-2239. doi: 10.7498/aps.58.2235
    [18] 刘建业, 郭文军, 左维, 李希国. 同位旋非对称核物质状态方程. 物理学报, 2009, 58(3): 1517-1525. doi: 10.7498/aps.58.1517
    [19] 陈向荣, 刘崇新, 李永勋. 基于非线性观测器的一类分数阶混沌系统完全状态投影同步. 物理学报, 2008, 57(3): 1453-1457. doi: 10.7498/aps.57.1453
    [20] 邵仕泉, 高 心, 刘兴文. 两个耦合的分数阶Chen系统的混沌投影同步控制. 物理学报, 2007, 56(12): 6815-6819. doi: 10.7498/aps.56.6815
计量
  • 文章访问数:  2670
  • PDF下载量:  466
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-03
  • 修回日期:  2014-07-28
  • 刊出日期:  2014-12-05

双频驱动下分数阶过阻尼马达在空间对称势中的定向输运

  • 1. 四川大学数学学院, 成都 610064;
  • 2. 中国电子科技集团公司第二十九研究所, 电子信息控制重点实验室, 成都 610036
    基金项目: 国家自然科学基金(批准号:11171238)和电子信息控制重点实验室项目(批准号:2013035)资助的课题.

摘要: 从阻尼对历史加速度记忆的角度出发, 对阶数p (0, 2)的分数阶阻尼物理意义给出了统一的合理解释, 具体分析了不同阶数下的阻尼记忆特性, 在此基础上研究了空间对称势中分数阶单分子马达在无偏置双频简谐激励下的输运问题, 通过数值方法分析了输运速度与模型各参数的关系以及分数阶阻尼对输运现象的影响机理. 研究表明, 在不同阶数下历史加速度对当前时刻阻尼力的贡献与距当前时刻的时间长度呈单增或单减关系; 在适当参数下输运速度随空间势深和外力频率的增大均会出现广义共振现象, 特别地, 在存在输运且阻尼阶数较大的情况下输运速度随势深增大出现阶梯状变化而与外力频率呈正比例关系; 输运速度及方向对外力波形十分敏感, 在不同外力下阻尼力的记忆性会分别促进或阻碍粒子跃迁, 甚至引发与整数阶方向相反的定向流.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回