搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一维金属光子晶体平凹镜的柱矢量光束亚波长聚焦

仲义 许吉 陆云清 王敏娟 王瑾

引用本文:
Citation:

基于一维金属光子晶体平凹镜的柱矢量光束亚波长聚焦

仲义, 许吉, 陆云清, 王敏娟, 王瑾

Subwavelength focusing of cylindrical vector beams by plano-concave lens based on one dimensional metallic photonic crystal

Zhong Yi, Xu Ji, Lu Yun-Qing, Wang Min-Juan, Wang Jin
PDF
导出引用
  • 柱矢量光束具有柱对称性的偏振分布, 其独特的光场分布和聚焦特性被广泛应用于光学微操纵及光学成像等领域, 并迅速向亚波长尺度拓展. 通常, 亚波长尺度聚焦采用等离激元透镜实现, 但存在光场调控的偏振态局限性. 而借助光子晶体的负折射效应, 不仅能够实现亚波长聚焦或成像, 而且应对正交偏振态同时有效. 采用对电磁波具有更强调控能力的一维金属光子晶体结构, 计算得到的能带结构和等频曲线表明其负折射效应在特定波段对正交偏振态同时有效. 在此基础上设计出一维金属光子晶体柱对称平凹镜结构, 通过有限元算法模拟显示了可见光波段的径向和旋向偏振光的同时亚波长聚焦行为. 进一步的结果表明, 改变柱矢量光束的偏振组分能够直接有效地调节焦场空间分布及偏振分布特性. 所提出的平凹镜结构能够实现对任意偏振组分的柱矢量光束的亚波长尺度聚焦, 且该结构的设计对于各波段情况均有参考意义. 该研究结果对小尺度粒子的光学微操纵、超分辨率成像等相关领域具有潜在的应用价值.
    Cylindrical vector beams (CVB) can exhibit a unique optical field distribution and focusing characteristic, due to the cylindrical symmetry in polarization. They are widely used in optical micro-manipulation, super-resolution imaging etc. and can be extended to subwavelength scale applications rapidly. Usually, the focusing CVB in subwavelength dimensions is realized by using plasmonic lens. However, this method is restricted by the state of polarization of electromagnetic waves. Nevertheless, when the negative refraction effect of photonic crystals is utilized, subwavelength focusing or imaging can be achieved in orthogonal states of polarization simultaneously. In this paper, the one-dimensional metallic photonic crystal (1D-MPC) with stronger manipulation ability is discussed. The calculated band structure and equi-frequency surfaces show negative refraction for both orthogonal states of polarization in a specific wavelength band. A cylindrical 1D-MPC plano-concave lens is designed to simultaneously focus radially and azimuthally polarized beams to subwavelength dimensions in visible spectrum. This phenomenon is simulated using the finite element method. Furthermore, variation of the polarization components in CVB can directly modulate the spacial intensity and the polarization distribution in the focal field. In fact, subwavelength focusing of CVB with arbitrary polarization components can be achieved by using the 1D-MPC plano-concave lens. The scheme proposed in this paper can be taken as reference for other wavelength bands as well. This study is also valuable for optical micro-manipulation of small particle, super-resolution imaging, and other related areas.
    • 基金项目: 南京邮电大学基金(批准号:NY213028,NY213148)和江苏省基础研究计划基金(批准号:BK20131383)资助的课题.
    • Funds: Project supported by the Nanjing University of Posts and Telecommunications Foundation, China (Grant Nos. NY213028, NY213148) and the Jiangsu Provincial Research Foundation for Basic Research, China (Grant No. BK20131383).
    [1]

    Zhan Q 2009 Adv. Opt. Photon. 1 1

    [2]

    Prabakaran K, Chandrasekaran R, Mahadevan G, Jaroszewicz Z, Rajesh K B, Pillai T V S 2013 Opt. Commun. 295 230

    [3]

    Zhao W Q, Tang F, Qiu L R, Liu D L 2013 Acta Phys. Sin. 62 054201 (in Chinese) [赵维谦, 唐芳, 邱丽荣, 刘大礼 2013 物理学报 62 054201]

    [4]

    Zhan Q, Leger J 2002 Opt. Express 10 324

    [5]

    Wróbel P, Pniewski J, Antosiewicz T J, Szoplik T 2009 Phys. Rev. Lett. 102 183902

    [6]

    Ko H, Kim H C, Cheng M 2010 Appl. Opt. 49 950

    [7]

    Shi H, Guo L J 2010 Appl. Phys. Lett. 96 141107

    [8]

    Yu Y, Zappe H 2011 Opt. Express 19 9434

    [9]

    Gjonaj B, Aulbach J, Johnson P M, Mosk A P, Kuiperrs L, Lagendijk A 2013 Phys. Rev. Lett. 110 266804

    [10]

    Veselago V G 1964 Usp. Fiz. Nauk 92 517

    [11]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [12]

    Schurig D, Smith D R 2004 Phys. Rev. E 70 065601

    [13]

    Chen J, Radu C, Puri A 2006 Appl. Phys. Lett. 88 071119

    [14]

    Smith D R, Kroll N 2000 Phys. Rev. Lett. 85 2933

    [15]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [16]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [17]

    Yablonovitch E, Gmitter T J 1989 Phys. Rev. Lett. 63 1950

    [18]

    Vodo P, Lu W T, Huang Y, Sridhar S 2006 Appl. Phys. Lett. 89 084104

    [19]

    Vodo P, Parimi P V, Lu W T, Sridhar S 2005 Appl. Phys. Lett. 86 201108

    [20]

    Cubukcu E, Aydin K, Ozbay E, Foteinopoulou S, Soukoulis C M 2003 Phys. Rev. Lett. 91 207401

    [21]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2011 Photonic Crystals: Molding the Flow of Light (New Jersey: Princeton University Press) p55

    [22]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [23]

    Drachev V P, Chettiar U K, Kildishev A V, Yuan H K, Cai W S, Shalaev V M 2008 Opt. Express 16 1186

    [24]

    Chen W Q, Mark D T, Satoshi I, Alexander V K, Vladimir M S 2010 Opt. Express 18 5124

    [25]

    Palik E D 1998 Handbook of Optical Constants of Solids (Vol. 3) (San Diego: Academic Press) p356

    [26]

    Pu J X, Wang T, Lin H C, Li C L 2010 Chin. Phys. B 19 089201

    [27]

    Chen J N, Xu Q F, Wang G 2011 Chin. Phys. B 20 114211

    [28]

    Yi X N, Li Y, Liu Y C, Ling X H, Zhang Z Y, Luo H L 2014 Acta Phys. Sin. 63 094203 (in Chinese) [易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203]

  • [1]

    Zhan Q 2009 Adv. Opt. Photon. 1 1

    [2]

    Prabakaran K, Chandrasekaran R, Mahadevan G, Jaroszewicz Z, Rajesh K B, Pillai T V S 2013 Opt. Commun. 295 230

    [3]

    Zhao W Q, Tang F, Qiu L R, Liu D L 2013 Acta Phys. Sin. 62 054201 (in Chinese) [赵维谦, 唐芳, 邱丽荣, 刘大礼 2013 物理学报 62 054201]

    [4]

    Zhan Q, Leger J 2002 Opt. Express 10 324

    [5]

    Wróbel P, Pniewski J, Antosiewicz T J, Szoplik T 2009 Phys. Rev. Lett. 102 183902

    [6]

    Ko H, Kim H C, Cheng M 2010 Appl. Opt. 49 950

    [7]

    Shi H, Guo L J 2010 Appl. Phys. Lett. 96 141107

    [8]

    Yu Y, Zappe H 2011 Opt. Express 19 9434

    [9]

    Gjonaj B, Aulbach J, Johnson P M, Mosk A P, Kuiperrs L, Lagendijk A 2013 Phys. Rev. Lett. 110 266804

    [10]

    Veselago V G 1964 Usp. Fiz. Nauk 92 517

    [11]

    Pendry J B 2000 Phys. Rev. Lett. 85 3966

    [12]

    Schurig D, Smith D R 2004 Phys. Rev. E 70 065601

    [13]

    Chen J, Radu C, Puri A 2006 Appl. Phys. Lett. 88 071119

    [14]

    Smith D R, Kroll N 2000 Phys. Rev. Lett. 85 2933

    [15]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [16]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [17]

    Yablonovitch E, Gmitter T J 1989 Phys. Rev. Lett. 63 1950

    [18]

    Vodo P, Lu W T, Huang Y, Sridhar S 2006 Appl. Phys. Lett. 89 084104

    [19]

    Vodo P, Parimi P V, Lu W T, Sridhar S 2005 Appl. Phys. Lett. 86 201108

    [20]

    Cubukcu E, Aydin K, Ozbay E, Foteinopoulou S, Soukoulis C M 2003 Phys. Rev. Lett. 91 207401

    [21]

    Joannopoulos J D, Johnson S G, Winn J N, Meade R D 2011 Photonic Crystals: Molding the Flow of Light (New Jersey: Princeton University Press) p55

    [22]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370

    [23]

    Drachev V P, Chettiar U K, Kildishev A V, Yuan H K, Cai W S, Shalaev V M 2008 Opt. Express 16 1186

    [24]

    Chen W Q, Mark D T, Satoshi I, Alexander V K, Vladimir M S 2010 Opt. Express 18 5124

    [25]

    Palik E D 1998 Handbook of Optical Constants of Solids (Vol. 3) (San Diego: Academic Press) p356

    [26]

    Pu J X, Wang T, Lin H C, Li C L 2010 Chin. Phys. B 19 089201

    [27]

    Chen J N, Xu Q F, Wang G 2011 Chin. Phys. B 20 114211

    [28]

    Yi X N, Li Y, Liu Y C, Ling X H, Zhang Z Y, Luo H L 2014 Acta Phys. Sin. 63 094203 (in Chinese) [易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203]

计量
  • 文章访问数:  3119
  • PDF下载量:  530
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-02
  • 修回日期:  2014-08-10
  • 刊出日期:  2014-12-05

基于一维金属光子晶体平凹镜的柱矢量光束亚波长聚焦

  • 1. 南京邮电大学光电工程学院, 南京 210023
    基金项目: 南京邮电大学基金(批准号:NY213028,NY213148)和江苏省基础研究计划基金(批准号:BK20131383)资助的课题.

摘要: 柱矢量光束具有柱对称性的偏振分布, 其独特的光场分布和聚焦特性被广泛应用于光学微操纵及光学成像等领域, 并迅速向亚波长尺度拓展. 通常, 亚波长尺度聚焦采用等离激元透镜实现, 但存在光场调控的偏振态局限性. 而借助光子晶体的负折射效应, 不仅能够实现亚波长聚焦或成像, 而且应对正交偏振态同时有效. 采用对电磁波具有更强调控能力的一维金属光子晶体结构, 计算得到的能带结构和等频曲线表明其负折射效应在特定波段对正交偏振态同时有效. 在此基础上设计出一维金属光子晶体柱对称平凹镜结构, 通过有限元算法模拟显示了可见光波段的径向和旋向偏振光的同时亚波长聚焦行为. 进一步的结果表明, 改变柱矢量光束的偏振组分能够直接有效地调节焦场空间分布及偏振分布特性. 所提出的平凹镜结构能够实现对任意偏振组分的柱矢量光束的亚波长尺度聚焦, 且该结构的设计对于各波段情况均有参考意义. 该研究结果对小尺度粒子的光学微操纵、超分辨率成像等相关领域具有潜在的应用价值.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回