搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强磁场对不同厚度Fe-Ni纳米多晶薄膜的生长过程及磁性能的影响

曹永泽 王强 李国建 马永会 隋旭东 赫冀成

引用本文:
Citation:

强磁场对不同厚度Fe-Ni纳米多晶薄膜的生长过程及磁性能的影响

曹永泽, 王强, 李国建, 马永会, 隋旭东, 赫冀成

Effects of high magnetic field on the growth and magnetic properties of Fe-Ni nano-polycrystalline thin films with different thickness values

Cao Yong-Ze, Wang Qiang, Li Guo-Jian, Ma Yong-Hui, Sui Xu-Dong, He Ji-Cheng
PDF
导出引用
  • 有无6 T强磁场条件下, 利用分子束气相沉积方法制备了21 nm和235 nm厚的Fe-Ni纳米多晶薄膜. 研究发现, 0 T时, 21 nm厚的薄膜是晶粒堆叠而成, 晶粒尺寸为6–7 nm; 6 T时, 21 nm厚的薄膜首先在基片表面形成了晶粒相互连接的5 nm平坦层, 晶粒沿基片表面拉长, 随后以6–7 nm尺寸的晶粒堆叠而成; 0 T时, 235 nm厚度的薄膜生长初期平均晶粒尺寸为3.6 nm, 生长中期平均晶粒尺寸为5.6 nm, 生长末期薄膜近似柱状方式生长, 晶粒沿生长方向拉长; 6 T时, 235 nm厚度的薄膜在基片表面也形成了晶粒相互连接的5 nm平坦层, 晶粒沿基片表面拉长, 随后以尺寸均匀的6.1 nm晶粒堆叠而成; 而且, 6 T强磁场使得不同厚度薄膜的面外与面内矫顽力都降低.
    The Fe-Ni nano-polycrystalline thin films of 21 nm and 235 nm in thickness are prepared by molecular beam vapor deposition in the absence and the presence of a magnetic field as high as 6 T. The results show that in the absence of the magnetic field, the 21-nm-thick thin films are formed by the grain stacks, and the sizes of grains are about 6-7 nm. In the presence of 6 T, the 5-nm-thick flat layers of interconnected grains of 21-nm-thick thin films are first formed on the surfaces of the substrates, and the grains are then elongated along the surfaces of substrates. Later on, the 21-nm-thick thin films are formed by 6-7 nm-size-grain stacks. In the absence of the magnetic field, the average grain size of the 235-nm-thick thin film is 3.6 nm in the early growth stage, and it is 5.6 nm in the middle growth stage. The growth way of thin film is akin to columnar growth in the final growth stage, and the grains are elongated along the growth direction. In the presence of 6 T, the 5-nm-thick flat layers of interconnected grains of 235-nm-thick thin films are also formed on the surfaces of the substrates, and the grains are elongated along the surfaces of substrates. Later on, the 235-nm-thick thin films are formed by about 6.1-nm-size-grain stacks. Accordingly, the coercive forces in the out-of-plane and in the in-plane of thin films of different thickness values decrease by the 6 T magnetic field.
    • 基金项目: 国家自然科学基金项目 (批准号: 51425401, 51101034)和中央高校基本科研业务费专项资金 (批准号: N140902001, N130509002) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51425401, 51101034), the Fundamental Research Funds for the Central Universities, China (Grant Nos. N140902001, N130509002).
    [1]

    Li X H, Yang Z 2004 Acta Phys. Sin. 53 1510 (in Chinese) [李晓红, 杨正 2004 物理学报 53 1510]

    [2]

    Berling D, Caricato A P, Denys E, Fernandez M, Leggieri G, Luby S, Luches A, Martino M, Mengucci P 2007 Appl. Surf. Sci. 253 6522

    [3]

    Zeng Z M, Feng J F, Wang Y, Han X F, Zhan W S, Zhang X G, Zhang Z 2006 Phys. Rev. Lett. 97 106605

    [4]

    Zhang L R, Lu H, Liu X, Bai J M, Wei F L 2012 Chin. Phys. B 21 037502

    [5]

    Liu H L, He W, Du H F, Fang Y P, Wu Q, Zhang X Q, Yang H T, Cheng Z H 2012 Chin. Phys. B 21 077503

    [6]

    Jia B P, Gao L 2008 J. Phys. Chem. C 112 666

    [7]

    Raylman R R, Clavo A C, Wahl R L 1996 Bioelectromagnetics 17 358

    [8]

    Suzuki T S, Sakka Y, Kitazawa K 2001 Adv. Eng. Mater. 3 490

    [9]

    Wang Q, Liu Y, Liu T, Gao P F, Wang K 2012 Appl. Phys. Lett. 101 132406

    [10]

    Wang C J, Wang Q, Wang Y Q, Huang J, He J C 2006 Acta Phys. Sin. 55 648 (in Chinese) [王春江, 王强, 王亚勤, 黄剑, 赫冀成 2006 物理学报 55 648]

    [11]

    Ma Y W, Watanabe K, Awaji S, Motokawa M 2000 Jpn. J. Appl. Phys. 39 L726

    [12]

    Taniguchi T, Sassa K, Yamada T, Asai S 2000 Mater. Trans. 8 981

    [13]

    Wang H Y, Mitani S, Motokawa M, Fujimori H 2003 J. Appl. Phys. 93 9145

    [14]

    Cao Y Z, Li G J, Wang Q, Ma Y H, Wang H M, He J C 2013 Acta Phys. Sin. 62 227501 (in Chinese) [曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成 2013 物理学报 62 227501]

    [15]

    Wang Q, Cao Y Z, Li G J, Wang K, Du J J, He J C 2013 Sci. Adv. Mater. 5 447

    [16]

    Cao Y Z, Wang Q, Li G J, Du J J, Wu C, He J C 2013 J. Magn. Magn. Mater. 332 38

  • [1]

    Li X H, Yang Z 2004 Acta Phys. Sin. 53 1510 (in Chinese) [李晓红, 杨正 2004 物理学报 53 1510]

    [2]

    Berling D, Caricato A P, Denys E, Fernandez M, Leggieri G, Luby S, Luches A, Martino M, Mengucci P 2007 Appl. Surf. Sci. 253 6522

    [3]

    Zeng Z M, Feng J F, Wang Y, Han X F, Zhan W S, Zhang X G, Zhang Z 2006 Phys. Rev. Lett. 97 106605

    [4]

    Zhang L R, Lu H, Liu X, Bai J M, Wei F L 2012 Chin. Phys. B 21 037502

    [5]

    Liu H L, He W, Du H F, Fang Y P, Wu Q, Zhang X Q, Yang H T, Cheng Z H 2012 Chin. Phys. B 21 077503

    [6]

    Jia B P, Gao L 2008 J. Phys. Chem. C 112 666

    [7]

    Raylman R R, Clavo A C, Wahl R L 1996 Bioelectromagnetics 17 358

    [8]

    Suzuki T S, Sakka Y, Kitazawa K 2001 Adv. Eng. Mater. 3 490

    [9]

    Wang Q, Liu Y, Liu T, Gao P F, Wang K 2012 Appl. Phys. Lett. 101 132406

    [10]

    Wang C J, Wang Q, Wang Y Q, Huang J, He J C 2006 Acta Phys. Sin. 55 648 (in Chinese) [王春江, 王强, 王亚勤, 黄剑, 赫冀成 2006 物理学报 55 648]

    [11]

    Ma Y W, Watanabe K, Awaji S, Motokawa M 2000 Jpn. J. Appl. Phys. 39 L726

    [12]

    Taniguchi T, Sassa K, Yamada T, Asai S 2000 Mater. Trans. 8 981

    [13]

    Wang H Y, Mitani S, Motokawa M, Fujimori H 2003 J. Appl. Phys. 93 9145

    [14]

    Cao Y Z, Li G J, Wang Q, Ma Y H, Wang H M, He J C 2013 Acta Phys. Sin. 62 227501 (in Chinese) [曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成 2013 物理学报 62 227501]

    [15]

    Wang Q, Cao Y Z, Li G J, Wang K, Du J J, He J C 2013 Sci. Adv. Mater. 5 447

    [16]

    Cao Y Z, Wang Q, Li G J, Du J J, Wu C, He J C 2013 J. Magn. Magn. Mater. 332 38

  • [1] 郭秦敏, 秦志辉. 气相沉积技术在原子制造领域的发展与应用. 物理学报, 2021, 70(2): 028101. doi: 10.7498/aps.70.20201436
    [2] 李国建, 常玲, 刘诗莹, 李萌萌, 崔伟斌, 王强. 强磁场下Sm-Fe薄膜不同晶态组织演化及磁性能调控. 物理学报, 2018, 67(9): 097501. doi: 10.7498/aps.67.20180212
    [3] 杨庆龄, 陈奕仪, 吴幸, 沈国瑞, 孙立涛. Cu/Al引线键合界面金属间化合物生长过程的原位实验研究. 物理学报, 2015, 64(21): 216804. doi: 10.7498/aps.64.216804
    [4] 李强, 杨合, 薛向欣, 李清伟. 强磁场对金属离子掺杂CaTiO3结构和光学性能的影响. 物理学报, 2014, 63(22): 227803. doi: 10.7498/aps.63.227803
    [5] 何斌, 丁丁, 屈世显, 王建国. 强磁场下He2++H(1s)的碰撞激发过程的态选择截面研究. 物理学报, 2013, 62(7): 073401. doi: 10.7498/aps.62.073401
    [6] 曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成. 强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响. 物理学报, 2013, 62(22): 227501. doi: 10.7498/aps.62.227501
    [7] 门福殿, 王海堂, 何晓刚. 强磁场中Fermi气体的稳定性及顺磁性. 物理学报, 2012, 61(10): 100503. doi: 10.7498/aps.61.100503
    [8] 曾思良, 倪飞飞, 何建锋, 邹士阳, 颜君. 强磁场中氢原子的能级结构. 物理学报, 2011, 60(4): 043201. doi: 10.7498/aps.60.043201
    [9] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [10] 任树洋, 任忠鸣, 任维丽. 晶粒尺寸对气相沉积薄膜磁取向生长的影响研究. 物理学报, 2011, 60(1): 016104. doi: 10.7498/aps.60.016104
    [11] 刘晶晶. 超强磁场对中子星外壳层核素56Fe,56Co,56Ni,56Mn和56Cr电子俘获过程中微子能量损失的影响. 物理学报, 2010, 59(7): 5169-5174. doi: 10.7498/aps.59.5169
    [12] 王春江, 苑轶, 王强, 刘铁, 娄长胜, 赫冀成. 强磁场条件下金属凝固过程中第二相的迁移行为. 物理学报, 2010, 59(5): 3116-3122. doi: 10.7498/aps.59.3116
    [13] 任树洋, 任忠鸣, 任维丽, 操光辉. 3 T强磁场对真空蒸发Zn薄膜晶体结构的影响. 物理学报, 2009, 58(8): 5567-5571. doi: 10.7498/aps.58.5567
    [14] 赵安昆, 任忠鸣, 任树洋, 操光辉, 任维丽. 强磁场对真空蒸镀制取Te薄膜的影响. 物理学报, 2009, 58(10): 7101-7107. doi: 10.7498/aps.58.7101
    [15] 高 翱, 王 强, 王春江, 刘 铁, 张 超, 赫冀成. 强磁场条件下Mn-Sb梯度复合材料的制备. 物理学报, 2008, 57(2): 767-771. doi: 10.7498/aps.57.767
    [16] 张 洁, 刘门全, 魏丙涛, 罗志全. 强磁场中修正URCA过程的中微子产能率. 物理学报, 2008, 57(9): 5448-5451. doi: 10.7498/aps.57.5448
    [17] 禹争光, 马衍伟, 王栋樑, 张现平, 高召顺, K. Watanabe, 黄伟文. 高性能MgB2长线材制备及性能表征. 物理学报, 2007, 56(11): 6680-6684. doi: 10.7498/aps.56.6680
    [18] 王春江, 王 强, 王亚勤, 黄 剑, 赫冀成. 强磁场对Al-Si合金凝固组织中硅分布的影响. 物理学报, 2006, 55(2): 648-654. doi: 10.7498/aps.55.648
    [19] 庞雪君, 王 强, 王春江, 王亚勤, 李亚彬, 赫冀成. 强磁场对铝合金中溶质组元分布状态的影响效果. 物理学报, 2006, 55(10): 5129-5134. doi: 10.7498/aps.55.5129
    [20] 陈仁杰, 荣传兵, 张宏伟, 贺淑莉, 张绍英, 沈保根. Sm(Co,Cu,Fe,Zr)z反磁化过程的微磁学分析. 物理学报, 2004, 53(12): 4341-4346. doi: 10.7498/aps.53.4341
计量
  • 文章访问数:  3495
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-26
  • 修回日期:  2014-10-26
  • 刊出日期:  2015-03-05

强磁场对不同厚度Fe-Ni纳米多晶薄膜的生长过程及磁性能的影响

  • 1. 东北大学, 材料电磁过程研究教育部重点实验室, 沈阳 110819
    基金项目: 国家自然科学基金项目 (批准号: 51425401, 51101034)和中央高校基本科研业务费专项资金 (批准号: N140902001, N130509002) 资助的课题.

摘要: 有无6 T强磁场条件下, 利用分子束气相沉积方法制备了21 nm和235 nm厚的Fe-Ni纳米多晶薄膜. 研究发现, 0 T时, 21 nm厚的薄膜是晶粒堆叠而成, 晶粒尺寸为6–7 nm; 6 T时, 21 nm厚的薄膜首先在基片表面形成了晶粒相互连接的5 nm平坦层, 晶粒沿基片表面拉长, 随后以6–7 nm尺寸的晶粒堆叠而成; 0 T时, 235 nm厚度的薄膜生长初期平均晶粒尺寸为3.6 nm, 生长中期平均晶粒尺寸为5.6 nm, 生长末期薄膜近似柱状方式生长, 晶粒沿生长方向拉长; 6 T时, 235 nm厚度的薄膜在基片表面也形成了晶粒相互连接的5 nm平坦层, 晶粒沿基片表面拉长, 随后以尺寸均匀的6.1 nm晶粒堆叠而成; 而且, 6 T强磁场使得不同厚度薄膜的面外与面内矫顽力都降低.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回