搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NbSi2奇异高压相及其热力学性质的第一性原理研究

濮春英 王丽 吕林霞 于荣梅 何朝政 卢志文 周大伟

引用本文:
Citation:

NbSi2奇异高压相及其热力学性质的第一性原理研究

濮春英, 王丽, 吕林霞, 于荣梅, 何朝政, 卢志文, 周大伟

Pressure-induced structural transition and thermodynamic properties of NbSi2 from first-principles calculations

Pu Chun-Ying, Wang Li, Lü Lin-Xia, Yu Rong-Mei, He Chao-Zheng, Lu Zhi-Wen, Zhou Da-Wei
PDF
导出引用
  • 采用基于粒子群优化算法的结构预测程序CALYPSO, 并结合第一性原理的VASP程序, 在175 GPa发现NbSi2的奇异立方高压相. 在此结构中, Nb原子形成金刚石结构, 而Si原子则形成正四面体镶嵌在金刚石结构中. 声子谱计算结果表明该结构是动力学稳定的. 电子结构分析表明, 六角相和立方相NbSi2均为金属, 对金属性贡献较大的是Nb原子, 而且Nb和Si原子之间存在明显的p-d杂化现象, 电荷更多地聚集在Si四面体中. 利用“应力应变”方法, 计算了NbSi2的弹性常数, 分析了其体积模量、剪切模量、杨氏模量和德拜温度等热动力学性质随压力的变化并进行了详细的讨论. 根据剪切模量和体积模量的比值分析了NbSi2两种相结构的脆性和延展性, 发现压力会导致六角相NbSi2的延展性增加, 但对立方相结构的延展性影响较小; 采用经验算法计算了NbSi2两种相结构硬度变化情况, 结合这一比值进行了详细的分析. 弹性各向异性计算结果表明, 随着压力增加, 六角结构的各向异性增强, 而立方结构的各向异性减小.
    Applying the particle swarm optimization algorithm to the crystal structure prediction, we first predict a novel high pressure phase of NbSi2 with Si tetrahedron embedded diamond structure of Nb. NbSi2 alloy undergoes a first-order phase transition from hexagonal phase to cubic phase at about 175 GPa with a volume collapse of 4.1%, indicating the first-order transition. New predicted NbSi2 phase is dynamically stable in the absence of any imaginary phonon frequency in the whole Brillouin zone of phonon spectrum. The calculations of total and partial density of states indicate that the NbSi2 is in hexagonal phase at 0 GPa and it is in cubic structure at 180 GPa, both of which exhibit metal behaviors, which is dominated by Nb atom. There exists obviously the p-d hybridization between Nb and Si, and more charges accumulate in Si tetrahedron. Based on the “stress-strain” method, elastic constants, bulk modulus, shear modulus, Young's modulus, and Debye temperature of NbSi2 in two phases under pressure are systematically investigated using first principles calculations combined with the quasi-harmonic Debye model. To evaluate the ductile and brittle characteristics of NbSi2 alloy, pressure dependence of G/B ratio is investigated. Furthermore, the values of hardness and percent anisotropy AB and AG and the universal anisotropic index AU (inset) for NbSi2 alloy in hexagonal and cubic structures are also calculated. Our results show that external pressure has different effects on the values of ductility and hardness and anisotropy of the two phases. External pressure can improve the ductility of hexagonal phase, while it has a negligible effect on that of cubic phase. The hardness values of two phases of NbSi2 are analyzed in detail by using the G/B ratio. As pressure increases, the elastic anisotropy of hexagonal phase increases rapidly, while that of cubic phase remains unchanged.
    • 基金项目: 国家自然科学基金 (批准号: 11247222, 51374132)、国家自然科学基金-河南人才培养联合基金(批准号: U1304612, U1404608, U1404216)和南阳师范学院科学基金(批准号: ZX2013017) 资助的课题.
    • Funds: Projected Supported by the National Natural Science Foundation of China (Grant Nos. 11247222, 51374132), the Henan Joint Funds of the Natural Science Foundation of China (Grant Nos. U1304612, U1404608, U1404216), and the Science Fund of Nanyang Normal University, China (Grant No. ZX2013017).
    [1]

    Shah D M, Anton D L, Pope D P, Chin S 1995 Mater. Sci. Eng. A 192-193 658

    [2]

    Subramanian P R, Mendiratta M G, Dimiduk D M, Stucke M A 1997 Mater. Sci. Eng. A 239-240 1

    [3]

    Zhang D Y 2001 Rare Metal Lett. 3 17 (in Chinese) [张德尧 2001 稀有金属快报 3 17]

    [4]

    Schlesinger M E, Okamoto H, Gokhale A B, Abbaschian G J 1993 J. Phase Equilibria 14 502

    [5]

    Geng T, Li C R, Du Z M, Guo C P, Zhao X Q, Xu H B 2011 J. Alloys Compd. 509 3080

    [6]

    Fernandes P B, Coelho G C, Ferreira F, Nunes C A, Sundman B 2002 Intermetallics 10 993

    [7]

    Meng X X, Fan J, Bao K, Li F F, Huang X L, Li Y, Tian F B, Duan D F, Jin X L, Zhu P W, He Z, Zhou Q, Gao C X, Liu B B, Cui T 2014 Chin. Phys. B 23 016012

    [8]

    San X J, He Z, Ma Y M, Cui T, Liu B B, Zou G T 2008 Chin. Phys. B 17 2222

    [9]

    Wang Y C, L J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116

    [10]

    Wang Y, L J, Zhu L, Ma Y 2012 Comput. Phys. Commun. 183 2063

    [11]

    L J, Wang Y C, Zhu L, Ma Y M 2011 Phys. Rev. Lett. 106 015503

    [12]

    Wang H B, Li Q, Wang H, Liu H Y, Cui T, Ma Y M 2010 J. Phys. Chem. C 114 8609

    [13]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [14]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [15]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [16]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [17]

    Kubiak R, Horyn R, Broda H, Lukaszewich K 1972 Bull. Acad. Pol. Sci. Ser. Sci. Chim. 20 429

    [18]

    Papadimitriou I, Utton C, Scott A, Tsakiropoulos P 2014 Intermetallics 54 125

    [19]

    Schubert K 1964 Kristallstrukturen Zweikomponentiger Phasen (Berlin, Heidelberg: Springer-Verlag)

    [20]

    Nye J F 1985 Physical Properties of Crystal (Oxford: Oxford University Press)

    [21]

    Voigt W 1928 Lehrburch der Kristallphysik (Leipzig: Teubner Press)

    [22]

    Reuss A, Angew Z 1929 Math. Mech. 9 49

    [23]

    Hill R 1952 Proc. Phys. Soc. 65 350

    [24]

    Anderson O L 1963 J. Phys. Chem. Solids 24 909

    [25]

    Pugh S F 1954 Philos. Mag. 45 823

    [26]

    Niu H Y, Wei P Y, Sun Y, Chen X Q, Franchini C, Li D Z, Li Y Y 2011 Appl. Phys. Lett. 99 031901

    [27]

    Chung D H, Buessem W R 1968 Anisotropy in Single-crystal Refractory Compounds: Proceedings (New York: Plenum Press)

    [28]

    Ranganathan S I, Starzewski M O 2008 Phys. Rev. Lett. 101 055504

  • [1]

    Shah D M, Anton D L, Pope D P, Chin S 1995 Mater. Sci. Eng. A 192-193 658

    [2]

    Subramanian P R, Mendiratta M G, Dimiduk D M, Stucke M A 1997 Mater. Sci. Eng. A 239-240 1

    [3]

    Zhang D Y 2001 Rare Metal Lett. 3 17 (in Chinese) [张德尧 2001 稀有金属快报 3 17]

    [4]

    Schlesinger M E, Okamoto H, Gokhale A B, Abbaschian G J 1993 J. Phase Equilibria 14 502

    [5]

    Geng T, Li C R, Du Z M, Guo C P, Zhao X Q, Xu H B 2011 J. Alloys Compd. 509 3080

    [6]

    Fernandes P B, Coelho G C, Ferreira F, Nunes C A, Sundman B 2002 Intermetallics 10 993

    [7]

    Meng X X, Fan J, Bao K, Li F F, Huang X L, Li Y, Tian F B, Duan D F, Jin X L, Zhu P W, He Z, Zhou Q, Gao C X, Liu B B, Cui T 2014 Chin. Phys. B 23 016012

    [8]

    San X J, He Z, Ma Y M, Cui T, Liu B B, Zou G T 2008 Chin. Phys. B 17 2222

    [9]

    Wang Y C, L J, Zhu L, Ma Y M 2010 Phys. Rev. B 82 094116

    [10]

    Wang Y, L J, Zhu L, Ma Y 2012 Comput. Phys. Commun. 183 2063

    [11]

    L J, Wang Y C, Zhu L, Ma Y M 2011 Phys. Rev. Lett. 106 015503

    [12]

    Wang H B, Li Q, Wang H, Liu H Y, Cui T, Ma Y M 2010 J. Phys. Chem. C 114 8609

    [13]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [14]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [15]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [16]

    Togo A, Oba F, Tanaka I 2008 Phys. Rev. B 78 134106

    [17]

    Kubiak R, Horyn R, Broda H, Lukaszewich K 1972 Bull. Acad. Pol. Sci. Ser. Sci. Chim. 20 429

    [18]

    Papadimitriou I, Utton C, Scott A, Tsakiropoulos P 2014 Intermetallics 54 125

    [19]

    Schubert K 1964 Kristallstrukturen Zweikomponentiger Phasen (Berlin, Heidelberg: Springer-Verlag)

    [20]

    Nye J F 1985 Physical Properties of Crystal (Oxford: Oxford University Press)

    [21]

    Voigt W 1928 Lehrburch der Kristallphysik (Leipzig: Teubner Press)

    [22]

    Reuss A, Angew Z 1929 Math. Mech. 9 49

    [23]

    Hill R 1952 Proc. Phys. Soc. 65 350

    [24]

    Anderson O L 1963 J. Phys. Chem. Solids 24 909

    [25]

    Pugh S F 1954 Philos. Mag. 45 823

    [26]

    Niu H Y, Wei P Y, Sun Y, Chen X Q, Franchini C, Li D Z, Li Y Y 2011 Appl. Phys. Lett. 99 031901

    [27]

    Chung D H, Buessem W R 1968 Anisotropy in Single-crystal Refractory Compounds: Proceedings (New York: Plenum Press)

    [28]

    Ranganathan S I, Starzewski M O 2008 Phys. Rev. Lett. 101 055504

  • [1] 赵玉娜, 丛红璐, 成爽, 于娜, 高涛, 马俊刚. 第一性原理研究Li2NH的晶格动力学和热力学性质. 物理学报, 2019, 68(13): 137102. doi: 10.7498/aps.68.20190139
    [2] 黄鳌, 卢志鹏, 周梦, 周晓云, 陶应奇, 孙鹏, 张俊涛, 张廷波. Al和O间隙原子对-Al2O3热力学性质影响的第一性原理计算. 物理学报, 2017, 66(1): 016103. doi: 10.7498/aps.66.016103
    [3] 邓世杰, 赵宇宏, 侯华, 文志勤, 韩培德. 高压下Ti2AlX(X=C,N)的结构、力学性能及热力学性质. 物理学报, 2017, 66(14): 146101. doi: 10.7498/aps.66.146101
    [4] 吴若熙, 刘代俊, 于洋, 杨涛. CaS电子结构和热力学性质的第一性原理计算. 物理学报, 2016, 65(2): 027101. doi: 10.7498/aps.65.027101
    [5] 胡永金, 吴云沛, 刘国营, 罗时军, 何开华. ZnTe结构相变、电子结构和光学性质的研究. 物理学报, 2015, 64(22): 227802. doi: 10.7498/aps.64.227802
    [6] 王金荣, 朱俊, 郝彦军, 姬广富, 向钢, 邹洋春. 高压下RhB的相变、弹性性质、电子结构及硬度的第一性原理计算. 物理学报, 2014, 63(18): 186401. doi: 10.7498/aps.63.186401
    [7] 周平, 王新强, 周木, 夏川茴, 史玲娜, 胡成华. 第一性原理研究硫化镉高压相变及其电子结构与弹性性质. 物理学报, 2013, 62(8): 087104. doi: 10.7498/aps.62.087104
    [8] 颜小珍, 邝小渝, 毛爱杰, 匡芳光, 王振华, 盛晓伟. 高压下ErNi2B2C弹性性质、电子结构和热力学性质的第一性原理研究. 物理学报, 2013, 62(10): 107402. doi: 10.7498/aps.62.107402
    [9] 赵玉娜, 高涛, 吕金钟, 马俊刚. Li-N-H储氢体系热力学性质的第一性原理研究. 物理学报, 2013, 62(14): 143101. doi: 10.7498/aps.62.143101
    [10] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [11] 张炜, 陈文周, 王俊斐, 张小东, 姜振益. MnPd合金相变, 弹性和热力学性质的第一性原理研究. 物理学报, 2012, 61(24): 246201. doi: 10.7498/aps.61.246201
    [12] 王斌, 刘颖, 叶金文. 高压下TiC的弹性、电子结构及热力学性质的第一性原理计算. 物理学报, 2012, 61(18): 186501. doi: 10.7498/aps.61.186501
    [13] 杨则金, 令狐荣锋, 程新路, 杨向东. Cr2MC(M=Al, Ga)的电子结构、弹性和热力学性质的第一性原理研究. 物理学报, 2012, 61(4): 046301. doi: 10.7498/aps.61.046301
    [14] 李雪梅, 韩会磊, 何光普. LiNH2 的晶格动力学、介电性质和热力学性质第一性原理研究. 物理学报, 2011, 60(8): 087104. doi: 10.7498/aps.60.087104
    [15] 李晓凤, 刘中利, 彭卫民, 赵阿可. 高压下CaPo弹性性质和热力学性质的第一性原理研究. 物理学报, 2011, 60(7): 076501. doi: 10.7498/aps.60.076501
    [16] 李世娜, 刘永. Cu3N弹性和热力学性质的第一性原理研究. 物理学报, 2010, 59(10): 6882-6888. doi: 10.7498/aps.59.6882
    [17] 徐布一, 陈俊蓉, 蔡静, 李权, 赵可清. 2-(甲苯-4-磺酰胺基)-苯甲酸的结构、光谱与热力学性质的理论研究. 物理学报, 2009, 58(3): 1531-1536. doi: 10.7498/aps.58.1531
    [18] 陈怡, 申江. NaZn13型Fe基化合物的结构和热力学性质研究. 物理学报, 2009, 58(13): 141-S145. doi: 10.7498/aps.58.141
    [19] 王海燕, 崔红保, 历长云, 李旭升, 王狂飞. AlAs相变及热动力学性质的第一性原理研究. 物理学报, 2009, 58(8): 5598-5603. doi: 10.7498/aps.58.5598
    [20] 刘娜娜, 宋仁伯, 孙翰英, 杜大伟. Mg2Sn电子结构及热力学性质的第一性原理计算. 物理学报, 2008, 57(11): 7145-7150. doi: 10.7498/aps.57.7145
计量
  • 文章访问数:  3528
  • PDF下载量:  516
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-22
  • 修回日期:  2014-11-25
  • 刊出日期:  2015-04-05

NbSi2奇异高压相及其热力学性质的第一性原理研究

  • 1. 南阳师范学院物理与电子工程学院, 南阳 473061
    基金项目: 国家自然科学基金 (批准号: 11247222, 51374132)、国家自然科学基金-河南人才培养联合基金(批准号: U1304612, U1404608, U1404216)和南阳师范学院科学基金(批准号: ZX2013017) 资助的课题.

摘要: 采用基于粒子群优化算法的结构预测程序CALYPSO, 并结合第一性原理的VASP程序, 在175 GPa发现NbSi2的奇异立方高压相. 在此结构中, Nb原子形成金刚石结构, 而Si原子则形成正四面体镶嵌在金刚石结构中. 声子谱计算结果表明该结构是动力学稳定的. 电子结构分析表明, 六角相和立方相NbSi2均为金属, 对金属性贡献较大的是Nb原子, 而且Nb和Si原子之间存在明显的p-d杂化现象, 电荷更多地聚集在Si四面体中. 利用“应力应变”方法, 计算了NbSi2的弹性常数, 分析了其体积模量、剪切模量、杨氏模量和德拜温度等热动力学性质随压力的变化并进行了详细的讨论. 根据剪切模量和体积模量的比值分析了NbSi2两种相结构的脆性和延展性, 发现压力会导致六角相NbSi2的延展性增加, 但对立方相结构的延展性影响较小; 采用经验算法计算了NbSi2两种相结构硬度变化情况, 结合这一比值进行了详细的分析. 弹性各向异性计算结果表明, 随着压力增加, 六角结构的各向异性增强, 而立方结构的各向异性减小.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回