搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钛酸锶钡纳米管的制备及其红外吸收性能研究

邹超 徐智谋 马智超 武兴会 彭静

引用本文:
Citation:

钛酸锶钡纳米管的制备及其红外吸收性能研究

邹超, 徐智谋, 马智超, 武兴会, 彭静

Preparation of BST nanotube and its infrared absorption properties

Zou Chao, Xu Zhi-Mou, Ma Zhi-Chao, Wu Xing-Hui, Peng Jing
PDF
导出引用
  • 首次采用溶胶凝胶法结合通孔阳极氧化铝模板, 成功制备出了钛酸锶钡纳米管. 该制备工艺简单、易实现而且成本低. 首先制备通孔阳极氧化铝模板和钛酸锶钡溶胶, 然后通过浸渍加上匀胶的方法将钛酸锶钡溶胶引入到通孔阳极氧化铝模板的纳米孔洞中, 最后在650℃下煅烧1 h形成钛酸锶钡纳米管. X射线衍射(XRD)证明, 制得的钛酸锶钡纳米管为立方钙钛矿相, 主要沿(110)晶向生长. 扫描电子显微镜(SEM)显示, 钛酸锶钡纳米管外径、内径和管长分别为75 nm, 50 nm, 16 μm. 傅里叶变换显微红外光谱仪(FTIR)测试结果表明在波数为1350-1650 cm-1红外波段, 阳极氧化铝/钛酸锶钡纳米管复合结构较钛酸锶钡薄膜有两处明显的吸收峰, 吸收峰位于1470和1550 cm-1处, 与通孔阳极氧化铝模板相比其吸收峰强度高出一倍, 最后分析了出现这一现象的可能原因.
    Ba0.6Sr0.4TiO3 (BST) nanotubes are fabricated successfully by sol-sel method with the through-hole anodic aluminum oxide (AAO) template for the first time so far as we know. This fabrication method is easy to realize at low cost because the through-hole AAO template and the BST sol can be acquired easily at low cost, so this is very valuable in the fabrication of other similar nanostructures. First, the steady BST sol is prepared and the well aligned through-hole anodic aluminum oxide template is fabricated by a two-step anodization method; second, the BST sol is introduced into the ordered nanohole arrays of the through-hole AAO template by dipping and spinning; and finally, the samples are fired in air at 650℃ for 1 h to get BST nanotubes. X ray diffraction (XRD) patterns reveal that the BST nanotubes are of cubic perovskite structures, and grow mainly along [110] crystal orientation. Scanning electron microscope (SEM) results show that the thickness and pore size of the through-hole AAO template are about 16 μm and 75 nm, respectively. The length, external and inner diameters of the BST nanotubes are about 16 μm, 75 nm and 50 nm, respectively. Measurements of BST nanotubes give results highly matched with that of the through-hole AAO template. Fourier transform infrared spectroscopy (FTIR) results shows that in the 1350-1650 cm-1 waveband, the composite structure of AAO/BST nanotubes has two obvious absorption peaks which are respectively at 1470 and 1550 cm-1, while the BST film does not have; the absorption property of the composite structure is about two times of the pure through-hole AAO membrane. Finally, the possible reasons of this phenomenon about infrared absorption are discussed.
    • 基金项目: 国家自然科学基金(批准号:61474048,61076042)和国家重大科学仪器设备开发专项(批准号:2011YQ16000205)资助的课题.
    • Funds: Project supported in part by the National Natural Science Foundation of China (Grant Nos. 61474048, 61076042), and the Special Project on Development of National Key Scientific Instruments and Equipment of China (Grant No. 2011YQ16000205).
    [1]

    Hwang C S 1998 Mater. Sci. Eng. B 56 178

    [2]

    Balachandran1 R, Ong B H, Wong H Y, Tan K B,Muhamad Rasat M 2012 Int. J. Electrochem. Sci. 711895

    [3]

    Chang H J, Moon K P, Seong I W 2012 Appl. Phys.Lett. 100 262107

    [4]

    Zhang T J, Huang H, Chen R 2011 Ferroelectrics 410137

    [5]

    Cheng J G, Tang J, Meng X J, Guo S L, Chu J H 2001 J. Am. Ceram. Soc. 84 1421

    [6]

    Zhang G Z, Jiang S L, Zeng Y K, Zhang Y Y, Zhang Q F, Yu F, Wang J 2011 Phys. Status Solidi A 208 11 699

    [7]

    Friederich A, Kohler C, Nikfalazar M, Wiens A., Sazegar M, Jakoby R, Bauer W, Binder J R 2014 J. Eur. Ceram.Soc. 34 2925

    [8]

    Schafranek R, Andre G, G. Balogh A, Enz T, Zheng Y L, Scheele P, Jakoby R, Klein A 2009 J. Eur. Ceram.Soc. 29 1433

    [9]

    Zhang M W, Zhai J W, Shen B, Yao X 2011 J. Am.Ceram. Soc. 94 3883

    [10]

    Masuda H, Fukuda K 1995 Science 268 1466

    [11]

    Zhang Z, Xu Z M, Sun T Y, Xu H F, Chen C H, Peng 2014 Acta Phys. Sin. 63 018102 (in Chinese) [张铮, 徐智谋, 孙堂友, 徐海峰, 陈存华, 彭静2014 物理学报63 018102]

    [12]

    Li Q, Wang K G, Dang W J, Hui D, Ren Z Y, Bai J T 2010 Acta Phys. Sin. 59 5851 (in Chinese) [李强, 王凯歌, 党维军, 惠丹, 任兆玉, 白晋涛2010 物理学报59 5851]

    [13]

    Xu C L, Li H, Zhao G Y, Li HL 2006 Mater. Lett. 60 2335

    [14]

    Banerjee P, Perez I, Henn-Lecordier L, Bok Lee S, W. Rubloff Gary 2009 Nat. Nanotechnol. 4 292

    [15]

    Yu J, Liao J X, Jin L, Wei X B, W P, WEI X B, Xu Z Q 2011 Acta Phys. Sin. 60 077701 (in Chinese) [俞健,廖家轩, 金龙, 魏雄邦, 汪澎, 尉旭波, 徐自强2011 物理学报60 077701]

    [16]

    Cui J W, Wu Y C, Wang Y, Zheng H M, Xu G Q, Zhang X Y 2012 Appl. Surf. Sci. 258 5305

    [17]

    Katarzyna Osińska, Dionizy Czekaj 2013 J. Therm. Anal. Calorim. 113 69

    [18]

    Ali N, Duan X F, Jiang Z T, Goh B M, Lamb R, Tadich A, Poinern G E J, Fawcett D, Chapman P, Singh P 2014 Appl. Surf. Sci. 289 560

    [19]

    Qin F F, Zhang H, Wang C X, Zhang J J, Guo C 2014 Opt. Commun. 331 325

  • [1]

    Hwang C S 1998 Mater. Sci. Eng. B 56 178

    [2]

    Balachandran1 R, Ong B H, Wong H Y, Tan K B,Muhamad Rasat M 2012 Int. J. Electrochem. Sci. 711895

    [3]

    Chang H J, Moon K P, Seong I W 2012 Appl. Phys.Lett. 100 262107

    [4]

    Zhang T J, Huang H, Chen R 2011 Ferroelectrics 410137

    [5]

    Cheng J G, Tang J, Meng X J, Guo S L, Chu J H 2001 J. Am. Ceram. Soc. 84 1421

    [6]

    Zhang G Z, Jiang S L, Zeng Y K, Zhang Y Y, Zhang Q F, Yu F, Wang J 2011 Phys. Status Solidi A 208 11 699

    [7]

    Friederich A, Kohler C, Nikfalazar M, Wiens A., Sazegar M, Jakoby R, Bauer W, Binder J R 2014 J. Eur. Ceram.Soc. 34 2925

    [8]

    Schafranek R, Andre G, G. Balogh A, Enz T, Zheng Y L, Scheele P, Jakoby R, Klein A 2009 J. Eur. Ceram.Soc. 29 1433

    [9]

    Zhang M W, Zhai J W, Shen B, Yao X 2011 J. Am.Ceram. Soc. 94 3883

    [10]

    Masuda H, Fukuda K 1995 Science 268 1466

    [11]

    Zhang Z, Xu Z M, Sun T Y, Xu H F, Chen C H, Peng 2014 Acta Phys. Sin. 63 018102 (in Chinese) [张铮, 徐智谋, 孙堂友, 徐海峰, 陈存华, 彭静2014 物理学报63 018102]

    [12]

    Li Q, Wang K G, Dang W J, Hui D, Ren Z Y, Bai J T 2010 Acta Phys. Sin. 59 5851 (in Chinese) [李强, 王凯歌, 党维军, 惠丹, 任兆玉, 白晋涛2010 物理学报59 5851]

    [13]

    Xu C L, Li H, Zhao G Y, Li HL 2006 Mater. Lett. 60 2335

    [14]

    Banerjee P, Perez I, Henn-Lecordier L, Bok Lee S, W. Rubloff Gary 2009 Nat. Nanotechnol. 4 292

    [15]

    Yu J, Liao J X, Jin L, Wei X B, W P, WEI X B, Xu Z Q 2011 Acta Phys. Sin. 60 077701 (in Chinese) [俞健,廖家轩, 金龙, 魏雄邦, 汪澎, 尉旭波, 徐自强2011 物理学报60 077701]

    [16]

    Cui J W, Wu Y C, Wang Y, Zheng H M, Xu G Q, Zhang X Y 2012 Appl. Surf. Sci. 258 5305

    [17]

    Katarzyna Osińska, Dionizy Czekaj 2013 J. Therm. Anal. Calorim. 113 69

    [18]

    Ali N, Duan X F, Jiang Z T, Goh B M, Lamb R, Tadich A, Poinern G E J, Fawcett D, Chapman P, Singh P 2014 Appl. Surf. Sci. 289 560

    [19]

    Qin F F, Zhang H, Wang C X, Zhang J J, Guo C 2014 Opt. Commun. 331 325

  • [1] 谈松林, 庄永起, 易健宏. 溶胶-喷雾法制备多壁碳纳米管增强氧化铝基复合材料及性能研究. 物理学报, 2022, 71(1): 018801. doi: 10.7498/aps.71.20211043
    [2] 刘贤哲, 张旭, 陶洪, 黄健朗, 黄江夏, 陈艺涛, 袁炜健, 姚日晖, 宁洪龙, 彭俊彪. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展. 物理学报, 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [3] 刘鸿吉, 刘双龙, 牛憨笨, 陈丹妮, 刘伟. 基于环形抽运光的红外超分辨显微成像方法. 物理学报, 2016, 65(23): 233601. doi: 10.7498/aps.65.233601
    [4] 张新伟, 华正和, 蒋毓文, 杨绍光. 溶胶凝胶自燃烧法合成金属与合金材料研究进展. 物理学报, 2015, 64(9): 098101. doi: 10.7498/aps.64.098101
    [5] 王庆宝, 张仲, 徐锡金, 吕英波, 张芹. N, Fe, La三掺杂锐钛矿型TiO2能带调节的理论与实验研究. 物理学报, 2015, 64(1): 017101. doi: 10.7498/aps.64.017101
    [6] 李侠, 郭文华, 吕志娟, 邢进华, 王鸣. 溶胶凝胶法制备圆柱形大孔二氧化硅反蛋白石结构晶体. 物理学报, 2014, 63(2): 024205. doi: 10.7498/aps.63.024205
    [7] 秦飞飞, 张海明, 王彩霞, 郭聪, 张晶晶. 基于阳极氧化铝纳米光栅的薄膜硅太阳能电池双重陷光结构设计与仿真. 物理学报, 2014, 63(19): 198802. doi: 10.7498/aps.63.198802
    [8] 高娅娜, 李喜峰, 张建华. 溶胶凝胶法制备高性能锆铝氧化物作为绝缘层的薄膜晶体管. 物理学报, 2014, 63(11): 118502. doi: 10.7498/aps.63.118502
    [9] 刘义, 张清, 李海金, 李勇, 刘厚通. Sr掺杂钙钛矿型氧化物Y1-xSrxCoO3的溶胶-凝胶制备及电阻率温度关系研究. 物理学报, 2013, 62(4): 047202. doi: 10.7498/aps.62.047202
    [10] 高晓林, 王仕发, 向霞, 刘春明, 祖小涛. 聚丙烯酰胺凝胶法制备大孔-氧化铝及其发光性能研究. 物理学报, 2013, 62(1): 016105. doi: 10.7498/aps.62.016105
    [11] 何琼, 许向东, 温粤江, 蒋亚东, 敖天宏, 樊泰君, 黄龙, 马春前, 孙自强. 溶胶凝胶制备氧化钒薄膜的生长机理及光电特性. 物理学报, 2013, 62(5): 056802. doi: 10.7498/aps.62.056802
    [12] 吴忠浩, 徐明, 段文倩. Fe掺杂对溶胶凝胶法制备的ZnO: Ni薄膜结构及发光特性的影响. 物理学报, 2012, 61(13): 137502. doi: 10.7498/aps.61.137502
    [13] 徐国成, 潘 玲, 关庆丰, 邹广田. 非晶钛酸铋的晶化过程. 物理学报, 2006, 55(6): 3080-3085. doi: 10.7498/aps.55.3080
    [14] 王 森, 俞国军, 巩金龙, 朱德彰, 何绥霞, 朱志远, 徐洪杰. 碳纳米管的氧化铝模板法合成及其退火效应研究. 物理学报, 2005, 54(10): 4949-4954. doi: 10.7498/aps.54.4949
    [15] 宋永梁, 季振国, 刘 坤, 王 超, 向 因, 叶志镇. 热处理参数对溶胶-凝胶法制备氧化锌薄膜特性的影响. 物理学报, 2004, 53(2): 636-639. doi: 10.7498/aps.53.636
    [16] 王 强, 沈明荣, 侯 芳, 甘肇强. 烘烤温度对溶胶-凝胶法制备镧掺杂钛酸铋薄膜结构与铁电性质的影响. 物理学报, 2004, 53(7): 2373-2377. doi: 10.7498/aps.53.2373
    [17] 曹 霞, 王治国, 何赛灵, 夏宇兴, 詹 黎. MgO:LiNb0.3与LiNb0.3质子交换光波导光学及结构特征的比较. 物理学报, 2004, 53(11): 3786-3793. doi: 10.7498/aps.53.3786
    [18] 何志巍, 甄聪棉, 兰 伟, 王印月. 溶胶-凝胶法制备纳米多孔SiO2薄膜. 物理学报, 2003, 52(12): 3130-3134. doi: 10.7498/aps.52.3130
    [19] 王玉霞, 郭震, 何海平, 曹颖, 汤洪高. 在Si(111)上用有机溶胶凝胶甩膜热解法制备(0001)定向的6H-SiC薄膜. 物理学报, 2001, 50(2): 256-261. doi: 10.7498/aps.50.256
    [20] 魏建华, 解士杰, 梅良模. 金属卤化物中的晶格振动. 物理学报, 2000, 49(10): 2027-2032. doi: 10.7498/aps.49.2027
计量
  • 文章访问数:  3750
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-25
  • 修回日期:  2014-12-27
  • 刊出日期:  2015-06-05

钛酸锶钡纳米管的制备及其红外吸收性能研究

  • 1. 华中科技大学 光学与电子信息学院, 武汉 430074;
  • 2. 武汉科技大学理学院, 武汉 430081
    基金项目: 国家自然科学基金(批准号:61474048,61076042)和国家重大科学仪器设备开发专项(批准号:2011YQ16000205)资助的课题.

摘要: 首次采用溶胶凝胶法结合通孔阳极氧化铝模板, 成功制备出了钛酸锶钡纳米管. 该制备工艺简单、易实现而且成本低. 首先制备通孔阳极氧化铝模板和钛酸锶钡溶胶, 然后通过浸渍加上匀胶的方法将钛酸锶钡溶胶引入到通孔阳极氧化铝模板的纳米孔洞中, 最后在650℃下煅烧1 h形成钛酸锶钡纳米管. X射线衍射(XRD)证明, 制得的钛酸锶钡纳米管为立方钙钛矿相, 主要沿(110)晶向生长. 扫描电子显微镜(SEM)显示, 钛酸锶钡纳米管外径、内径和管长分别为75 nm, 50 nm, 16 μm. 傅里叶变换显微红外光谱仪(FTIR)测试结果表明在波数为1350-1650 cm-1红外波段, 阳极氧化铝/钛酸锶钡纳米管复合结构较钛酸锶钡薄膜有两处明显的吸收峰, 吸收峰位于1470和1550 cm-1处, 与通孔阳极氧化铝模板相比其吸收峰强度高出一倍, 最后分析了出现这一现象的可能原因.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回