搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类弹性和阻尼双分段非线性约束系统周期响应特性研究

刘飞 刘彬 刘浩然

引用本文:
Citation:

一类弹性和阻尼双分段非线性约束系统周期响应特性研究

刘飞, 刘彬, 刘浩然

Cycle response characteristics research on a class of piecewise nonlinear elastic and damping double constraint system

Liu Fei, Liu Bin, Liu Hao-Ran
PDF
导出引用
  • 考虑动态条件下的两种典型分段非线性约束, 根据广义耗散Lagrange原理建立一类具有弹性和阻尼双分段非线性约束系统动力学模型. 采用平均法求解得到系统在周期激励下的幅频响应关系. 分别比较系统在不同分段非线性约束条件下的时域响应、分岔响应和幅频响应, 得到受分段非线性约束的系统响应特性以及约束条件变化时系统响应的变化规律. 对比两种约束条件下的幅频响应, 研究得到系统稳定性受不同分段非线性因素影响及两种分段非线性约束之间的相互影响规律.
    Piecewise nonlinear constraint exists in various fields and it always affects the stability of a system. In order to realize the dynamic characteristic of the system constrained by these nonlinearity, we consider two kinds of typical piecewise nonlinear constraints under the dynamic conditions, and establish a dynamic model with double piecewise nonlinear constraint of elasticity and damping, according to the generalized dissipation Lagrange principle. An average method is used to solve the amplitude and frequency response of the system under a periodic external incentive. By a numerical simulation, we compare the time domain responses under different piecewise nonlinear elastic constraints. The results show that the stronger the piecewise nonlinear elastic constraint, the more obvious the piecewise nonlinear damping constraint is. We also compare the bifurcation responses under different piecewise nonlinear damping constraints, the results show that the chaos state will emerge in an enlarged scope with the increase of the piecewise nonlinear damping coefficient, and threaten the stability of the system. The dynamic evolution process of the system is shown by the phase diagrams and Poincaré sections under the corresponding constraint conditions. By comparing the amplitude-frequency characteristics of the system under different constraint conditions, we obtain the response characteristic of the system and its change rule with the piecewise nonlinear constraints. By comparing and analyzing the amplitude-frequency characteristics under the piecewise nonlinear elastic and piecewise nonlinear damping constraint, we obtain the law of system stability influenced by different nonlinear factors, and the interaction relationship between the two piecewise nonlinear constraints.
    • 基金项目: 国家自然科学基金(批准号:51105324)、河北省科技支撑计划(批准号:13211907D)和河北省自然科学基金(批准号:E2015203349)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51105324), the Science and Technology Support Program of Hebei Province, China (Grant No. 13211907D), and the Natural Science Foundation of Hebei Province, China (Grant No. E2015203349).
    [1]

    Liang F, Han M A, Valery G R 2012 Nonlinear Anal.-Theor. 75 4355

    [2]

    Wang C J, Yang K L, Qu S X 2013 Chin. Phys. B 22 030502

    [3]

    Lin P, Qin K Y, Wu H Y 2011 Chin. Phys. B 20 108701

    [4]

    Quentin B, Tetsushi U, Danièle F P, Takuji K 2009 Chaos Solitons Fract. 42 187

    [5]

    Jiang H B, Li T, Zeng X L, Zhang L P 2014 Chin. Phys. B 23 010501

    [6]

    Wang L Z, Zhao W L, Chen X 2012 Acta Phys. Sin. 61 160501 (in Chinese) [王林泽, 赵文礼, 陈旋 2012 物理学报 61 160501]

    [7]

    Zhang Y, Bi Q S 2011 Chin. Phys. B 20 010504

    [8]

    Zhang C, Yu Y, Han X J, Bi Q S 2012 Chin. Phys. B 21 100501

    [9]

    Xu L, Lu M W, Cao Q 2003 J. Sound Vib. 264 873

    [10]

    Xu L, Lu M W, Cao Q 2002 Phys. Lett. A 301 65

    [11]

    Jiang J, Gao W H 2013 Chin. J. Theor. Appl. Mech. 45 16 (in Chinese) [江俊, 高文辉 2013 力学学报 45 16]

    [12]

    Akhavan A, Samsudin A, Akhshani A 2009 Chaos Solitons Fract. 42 1046

    [13]

    Partha S D, Soma D, Soumitro B, Akhil R R 2009 Phys. Lett. A 373 4426

    [14]

    Zhang L M, Zhang J W, Wu R H 2014 Acta Phys. Sin. 63 160505 (in Chinese) [张玲梅, 张建文, 吴润衡 2014 物理学报 63 160505]

    [15]

    Zachary P K, Paul C B 2010 Physica D 239 1048

    [16]

    Jia Q F, Yu W, Liu X J, Wang D J 2004 Chin. J. Theor. Appl. Mech. 36 373 (in Chinese) [贾启芬, 于雯, 刘习军, 王大钧 2004 力学学报 36 373]

    [17]

    Ji J C, Hansen C H 2005 J. Sound Vib. 283 467

    [18]

    Simpson D J W, Meiss J D 2012 Physica D 241 1861

    [19]

    Li X J, Yan J, Chen X Q, Cao Y 2014 Acta Phys. Sin. 63 200202 (in Chinese) [李晓静, 严静, 陈绚青, 曹毅 2014 物理学报 63 200202]

    [20]

    Xuan B T, Nur H, Hideki Y 2012 Mechatronics 22 65

  • [1]

    Liang F, Han M A, Valery G R 2012 Nonlinear Anal.-Theor. 75 4355

    [2]

    Wang C J, Yang K L, Qu S X 2013 Chin. Phys. B 22 030502

    [3]

    Lin P, Qin K Y, Wu H Y 2011 Chin. Phys. B 20 108701

    [4]

    Quentin B, Tetsushi U, Danièle F P, Takuji K 2009 Chaos Solitons Fract. 42 187

    [5]

    Jiang H B, Li T, Zeng X L, Zhang L P 2014 Chin. Phys. B 23 010501

    [6]

    Wang L Z, Zhao W L, Chen X 2012 Acta Phys. Sin. 61 160501 (in Chinese) [王林泽, 赵文礼, 陈旋 2012 物理学报 61 160501]

    [7]

    Zhang Y, Bi Q S 2011 Chin. Phys. B 20 010504

    [8]

    Zhang C, Yu Y, Han X J, Bi Q S 2012 Chin. Phys. B 21 100501

    [9]

    Xu L, Lu M W, Cao Q 2003 J. Sound Vib. 264 873

    [10]

    Xu L, Lu M W, Cao Q 2002 Phys. Lett. A 301 65

    [11]

    Jiang J, Gao W H 2013 Chin. J. Theor. Appl. Mech. 45 16 (in Chinese) [江俊, 高文辉 2013 力学学报 45 16]

    [12]

    Akhavan A, Samsudin A, Akhshani A 2009 Chaos Solitons Fract. 42 1046

    [13]

    Partha S D, Soma D, Soumitro B, Akhil R R 2009 Phys. Lett. A 373 4426

    [14]

    Zhang L M, Zhang J W, Wu R H 2014 Acta Phys. Sin. 63 160505 (in Chinese) [张玲梅, 张建文, 吴润衡 2014 物理学报 63 160505]

    [15]

    Zachary P K, Paul C B 2010 Physica D 239 1048

    [16]

    Jia Q F, Yu W, Liu X J, Wang D J 2004 Chin. J. Theor. Appl. Mech. 36 373 (in Chinese) [贾启芬, 于雯, 刘习军, 王大钧 2004 力学学报 36 373]

    [17]

    Ji J C, Hansen C H 2005 J. Sound Vib. 283 467

    [18]

    Simpson D J W, Meiss J D 2012 Physica D 241 1861

    [19]

    Li X J, Yan J, Chen X Q, Cao Y 2014 Acta Phys. Sin. 63 200202 (in Chinese) [李晓静, 严静, 陈绚青, 曹毅 2014 物理学报 63 200202]

    [20]

    Xuan B T, Nur H, Hideki Y 2012 Mechatronics 22 65

  • [1] 宋庆功, 王丽杰, 朱燕霞, 康建海, 顾威风, 王明超, 刘志锋. 硅和钇双掺杂对γ-TiAl基合金稳定性和抗氧化性的影响. 物理学报, 2019, 68(19): 196101. doi: 10.7498/aps.68.20190490
    [2] 王海峰, 李旺, 顾国彪, 沈俊, 滕启治. 风力发电机自循环蒸发内冷系统稳定性的研究. 物理学报, 2016, 65(3): 030501. doi: 10.7498/aps.65.030501
    [3] 雍文梅, 陈海军. 线性与非线性光晶格中偶极孤立子的稳定性. 物理学报, 2014, 63(15): 150302. doi: 10.7498/aps.63.150302
    [4] 陈海军, 李向富. 二维线性与非线性光晶格中物质波孤立子的稳定性. 物理学报, 2013, 62(7): 070302. doi: 10.7498/aps.62.070302
    [5] 罗晓华, 何为, 吴木营, 罗诗裕. 准周期激励与应变超晶格的动力学稳定性. 物理学报, 2013, 62(24): 247301. doi: 10.7498/aps.62.247301
    [6] 石玉仁, 张娟, 杨红娟, 段文山. 组合KdV方程的双扭结孤立波及其稳定性研究. 物理学报, 2011, 60(2): 020402. doi: 10.7498/aps.60.020402
    [7] 黄丽莲, 何少杰. 分数阶状态空间系统的稳定性分析及其在分数阶混沌控制中的应用. 物理学报, 2011, 60(4): 044703. doi: 10.7498/aps.60.044703
    [8] 唐春森, 孙跃, 戴欣, 王智慧, 苏玉刚, 呼爱国. 感应电能传输系统多谐振点及其自治振荡稳定性分析. 物理学报, 2011, 60(4): 048401. doi: 10.7498/aps.60.048401
    [9] 陈海军, 李高清, 薛具奎. 变分法研究一维Bose-Fermi系统的稳定性. 物理学报, 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.1
    [10] 石玉仁, 张娟, 杨红娟, 段文山. mKdV方程的双扭结单孤子及其稳定性研究. 物理学报, 2010, 59(11): 7564-7569. doi: 10.7498/aps.59.7564
    [11] 何学军, 张良欣, 任爱娣. 横向补给系统高架索的稳定性与分岔研究. 物理学报, 2010, 59(5): 3088-3092. doi: 10.7498/aps.59.3088
    [12] 刘浩然, 朱占龙, 时培明. 一类相对转动时滞非线性动力系统的稳定性分析. 物理学报, 2010, 59(10): 6770-6777. doi: 10.7498/aps.59.6770
    [13] 刘爽, 刘彬, 张业宽, 闻岩. 一类时滞非线性相对转动系统的Hopf分岔与周期解的稳定性. 物理学报, 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [14] 时培明, 蒋金水, 刘彬. 耦合相对转动非线性动力系统的稳定性与近似解. 物理学报, 2009, 58(4): 2147-2154. doi: 10.7498/aps.58.2147
    [15] 孟 宗, 刘 彬. 一类非线性相对转动动力系统的平衡稳定性及组合谐波近似解. 物理学报, 2008, 57(3): 1329-1334. doi: 10.7498/aps.57.1329
    [16] 时培明, 刘 彬, 刘 爽. 一类谐波激励相对转动非线性动力系统的稳定性与近似解. 物理学报, 2008, 57(8): 4675-4684. doi: 10.7498/aps.57.4675
    [17] 孟 宗, 刘 彬. 相对转动非线性动力学方程的稳定性及在一类非线性弹性系数下的解. 物理学报, 2007, 56(11): 6194-6198. doi: 10.7498/aps.56.6194
    [18] 谢 莉, 雷银照. 线性瞬态涡流电磁场定解问题解的唯一性和稳定性. 物理学报, 2006, 55(9): 4397-4406. doi: 10.7498/aps.55.4397
    [19] 张 凯, 冯 俊. 相对论Birkhoff系统的对称性与稳定性. 物理学报, 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
    [20] 王 坤. 二端面转轴相对转动非线性动力学系统的稳定性与近似解. 物理学报, 2005, 54(12): 5530-5533. doi: 10.7498/aps.54.5530
计量
  • 文章访问数:  2428
  • PDF下载量:  338
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-11
  • 修回日期:  2014-12-09
  • 刊出日期:  2015-06-05

一类弹性和阻尼双分段非线性约束系统周期响应特性研究

  • 1. 燕山大学信息科学与工程学院, 秦皇岛 066004;
  • 2. 燕山大学, 河北省特种光纤与光纤传感重点实验室, 秦皇岛 066004
    基金项目: 国家自然科学基金(批准号:51105324)、河北省科技支撑计划(批准号:13211907D)和河北省自然科学基金(批准号:E2015203349)资助的课题.

摘要: 考虑动态条件下的两种典型分段非线性约束, 根据广义耗散Lagrange原理建立一类具有弹性和阻尼双分段非线性约束系统动力学模型. 采用平均法求解得到系统在周期激励下的幅频响应关系. 分别比较系统在不同分段非线性约束条件下的时域响应、分岔响应和幅频响应, 得到受分段非线性约束的系统响应特性以及约束条件变化时系统响应的变化规律. 对比两种约束条件下的幅频响应, 研究得到系统稳定性受不同分段非线性因素影响及两种分段非线性约束之间的相互影响规律.

English Abstract

参考文献 (20)

目录

    /

    返回文章
    返回