搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于液晶空间光调制器的全息显示

夏军 常琛亮 雷威

引用本文:
Citation:

基于液晶空间光调制器的全息显示

夏军, 常琛亮, 雷威

Holographic display based on liquid crystal spatial light modulator

Xia Jun, Chang Chen-Liang, Lei Wei
PDF
导出引用
  • 在传统的纯相位全息显示系统中, 一般基于快速傅里叶变换(FFT)算法来计算相位全息图, 在FFT的计算中需要遵循Nyquist采样定理, 因此, 重建图像的尺寸往往受限于空间光调制器的固定采样率. 这个限制可以通过卷积算法或者两步菲涅耳衍射算法来解决, 但是需要使用多个FFT的计算, 导致计算量增大. 鉴于此, 提出了一种基于透镜的纯相位全息图计算方法. 在全息图的计算中, 通过透镜的成像原理建立一个采样率可变的虚拟全息面, 通过调节相应的距离参数使得在全息图的计算中可以任意调节原始图像的采样率, 摆脱了传统方法中液晶空间光调制器带宽积对重建图像尺寸的限制, 并且这种算法只需使用一次FFT就能达到变采样率的衍射计算, 大幅提高了全息图的计算速度. 数值模拟及光学实验结果证明了此方法可以在全息显示光学系统中清晰地重建不同尺寸的图像. 同时该系统可以有效地消除由空间光调制器的像素化结构带来的零级衍射.
    In conventional phase-only holographic display, the phase-only computer generated hologram is usually calculated based on the fast Fourier transform (FFT) algorithm, in which the Nyquist theory should be satisfied. However, due to the pixel structure of the liquid crystal spatial light modulator and a fixed spatial sampling rate, the size of the reconstructed image is limited by the space-bandwidth product of the liquid crystal phase modulator. The traditional solution is to use convolution algorithm or double-step Fresnel diffraction algorithm to calculate the Fresnel hologram, but FFT has to be calculated many times in both of the methods, thereby increasing the burden of hologram computation. Therefore, in this paper we propose a method to calculate the phase-only hologram based on setting a virtual hologram plane. This virtual hologram plane is set based on the principle of lens imaging. So the calculation of the hologram can be divided into two steps: the first step is to calculate the Fresnel diffraction from the object plane to the virtual hologram plane, and the second step is to calculate the hologram from the virtual hologram plane by being multiplied with a quadratic phase term. In this way, the hologram can be calculated from the original object with any sampling rate we need by adjusting the corresponding parameters of distance. By this method one can calculate the Fresnel diffraction between hologram plane and object plane with variable sampling rates, without considering the space-bandwidth product of the liquid crystal phase modulator, and this algorithm uses only one FFT calculation, which can speed up the calculation of hologram compared with the convolution based method (using three FFTs in calculation) and the double-step Fresnel method (using two FFTs in calculation). Both the computer simulation and the optical experiments demonstrate that the object can be reconstructed with different sizes in the holographic display system. In the optical experiment, the zero-order diffraction can be removed by placing a filter on the back focal plane of the imaging lens and the speckle noise can also be eliminated in order to improve the reconstruction quality by displaying multiple phase-only holograms at a high speed. The proposed method in this paper shows a potential application in zoom-able liquid crystal spatial light modulator based holographic display system.
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB328803)、国家自然科学基金(批准号:61372030,91333118)、国家高技术研究发展计划(批准号:2012AA03A302,2013AA013904)和江苏省普通高校研究生科研创新计划(批准号:CXZZ11_0152)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB328803), the National Natural Science Foundation of China (Grant Nos. 61372030, 91333118), the National High Technology Research and Development Program of China (Grant Nos. 2012AA03A302, 2013AA013904), and the Innovation Project of Jiangsu Graduate Education, China (Grant No. CXZZ11_0152).
    [1]

    Xia J, Yin H 2009 Opt. Eng. 48 020502

    [2]

    Haist T, Schonleber M, Tiziani H J 1997 Opt. Commun. 140 299

    [3]

    Yu Y J, Wang T, Zheng H D 2009 Acta Phys. Sin. 58 3154 (in Chinese) [于瀛洁, 王涛, 郑华东 2009 物理学报 58 3154]

    [4]

    Zheng H D, Yu Y J, Dai L M, Wang T 2010 Acta Phys. Sin. 59 6145 (in Chinese) [郑华东, 于瀛洁, 代林茂, 王涛 2010 物理学报 59 6145]

    [5]

    Shimobaba T, Weng J, Sakurai T, Okada N, Nishitsuji T, Takada N, Shiraki A, Masuda N, Ito T 2012 Comput. Phys. Commun. 183 1124

    [6]

    Muffoletto R P, Tyler J M, Tohline J E 2007 Opt. Express 15 5631

    [7]

    Shimobaba T, Kakue T, Okada N, Oikawa M, Yamaguchi Y, Ito T 2013 J. Opt. 15 075302

    [8]

    Shimobaba T, Makowski M, Kakue T, Oikawa M, Okada N, Endo Y, Hirayama R, Ito T 2013 Opt. Express 21 25285

    [9]

    Zhang F, Yamaguchi I, Yaroslavsky L P 2004 Opt. Lett. 29 1668

    [10]

    Okada N, Shimobaba T, Ichihashi Y, Oi R, Yamamoto K, Oikawa M, Kakue T, Masuda N, Ito T 2013 Opt. Express 21 9192

    [11]

    Chang C, Xia J, Lei W 2012 Opt. Commun. 285 24

    [12]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [13]

    Zhang H, Xie J H, Liu J, Wang Y T 2009 Appl. Opt. 48 5834

    [14]

    Makowski M, Ducin I, Kakarenko K, Suszek J, Sypek M, Kolodziejczyki A 2012 Opt. Express 20 25130

  • [1]

    Xia J, Yin H 2009 Opt. Eng. 48 020502

    [2]

    Haist T, Schonleber M, Tiziani H J 1997 Opt. Commun. 140 299

    [3]

    Yu Y J, Wang T, Zheng H D 2009 Acta Phys. Sin. 58 3154 (in Chinese) [于瀛洁, 王涛, 郑华东 2009 物理学报 58 3154]

    [4]

    Zheng H D, Yu Y J, Dai L M, Wang T 2010 Acta Phys. Sin. 59 6145 (in Chinese) [郑华东, 于瀛洁, 代林茂, 王涛 2010 物理学报 59 6145]

    [5]

    Shimobaba T, Weng J, Sakurai T, Okada N, Nishitsuji T, Takada N, Shiraki A, Masuda N, Ito T 2012 Comput. Phys. Commun. 183 1124

    [6]

    Muffoletto R P, Tyler J M, Tohline J E 2007 Opt. Express 15 5631

    [7]

    Shimobaba T, Kakue T, Okada N, Oikawa M, Yamaguchi Y, Ito T 2013 J. Opt. 15 075302

    [8]

    Shimobaba T, Makowski M, Kakue T, Oikawa M, Okada N, Endo Y, Hirayama R, Ito T 2013 Opt. Express 21 25285

    [9]

    Zhang F, Yamaguchi I, Yaroslavsky L P 2004 Opt. Lett. 29 1668

    [10]

    Okada N, Shimobaba T, Ichihashi Y, Oi R, Yamamoto K, Oikawa M, Kakue T, Masuda N, Ito T 2013 Opt. Express 21 9192

    [11]

    Chang C, Xia J, Lei W 2012 Opt. Commun. 285 24

    [12]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [13]

    Zhang H, Xie J H, Liu J, Wang Y T 2009 Appl. Opt. 48 5834

    [14]

    Makowski M, Ducin I, Kakarenko K, Suszek J, Sypek M, Kolodziejczyki A 2012 Opt. Express 20 25130

  • [1] 徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东. 简单结构超表面实现波长和偏振态同时复用全息显示新方法. 物理学报, 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [2] 白云鹤, 臧瑞环, 汪盼, 荣腾达, 马凤英, 杜艳丽, 段智勇, 弓巧侠. 基于空间光调制器的非相干数字全息单次曝光研究. 物理学报, 2018, 67(6): 064202. doi: 10.7498/aps.67.20172127
    [3] 彭玮婷, 刘娟, 李昕, 薛高磊, 韩剑, 胡滨, 王涌天. 新颖材料器件为全息显示带来的新机遇. 物理学报, 2018, 67(2): 024213. doi: 10.7498/aps.67.20172026
    [4] 曾超, 高洪跃, 刘吉成, 于瀛洁, 姚秋香, 刘攀, 郑华东, 曾震湘. 动态全息三维显示研究最新进展. 物理学报, 2015, 64(12): 124215. doi: 10.7498/aps.64.124215
    [5] 周琦, 陆俊发, 印建平. 可控双空心光束的理论方案及实验研究. 物理学报, 2015, 64(5): 053701. doi: 10.7498/aps.64.053701
    [6] 冯驰, 常军, 杨海波. 双小凹光学成像系统设计. 物理学报, 2015, 64(3): 034201. doi: 10.7498/aps.64.034201
    [7] 赵冠凯, 刘军, 李儒新. 基于多光子脉冲内干涉相位扫描法对飞秒激光脉冲进行相位测量和补偿的研究. 物理学报, 2014, 63(16): 164207. doi: 10.7498/aps.63.164207
    [8] 李俊昌, 楼宇丽, 桂进斌, 彭祖杰, 宋庆和. 数字全息图取样模型的简化研究. 物理学报, 2013, 62(12): 124203. doi: 10.7498/aps.62.124203
    [9] 周文静, 胡文涛, 瞿惠, 朱亮, 于瀛洁. 单幅层析全息图的记录及数据重建. 物理学报, 2012, 61(16): 164212. doi: 10.7498/aps.61.164212
    [10] 刘伟伟, 任煜轩, 高红芳, 孙晴, 王自强, 李银妹. 泽尼克多项式校正全息阵列光镊像差的实验研究. 物理学报, 2012, 61(18): 188701. doi: 10.7498/aps.61.188701
    [11] 郑华东, 于瀛洁, 代林茂, 王涛. 彩色全息显示中液晶空间光调制器位相调制偏差的矫正方法. 物理学报, 2010, 59(9): 6145-6151. doi: 10.7498/aps.59.6145
    [12] 于瀛洁, 王涛, 郑华东. 基于数字闪耀光栅的位相全息图光电再现优化. 物理学报, 2009, 58(5): 3154-3160. doi: 10.7498/aps.58.3154
    [13] 蔡冬梅, 凌 宁, 姜文汉. 纯相位液晶空间光调制器拟合泽尼克像差性能分析. 物理学报, 2008, 57(2): 897-903. doi: 10.7498/aps.57.897
    [14] 朱化凤, 陈建文, 高鸿奕, 谢红兰, 徐至展. 高频可变间距全息光栅的制作方法的计算机模拟研究. 物理学报, 2005, 54(2): 682-686. doi: 10.7498/aps.54.682
    [15] 王寯越, 朱佩平, 郑 欣, 袁清习, 田玉莲, 黄万霞, 吴自玉. 基于离散Fourier变换的内源全息图重构计算方法. 物理学报, 2005, 54(3): 1172-1177. doi: 10.7498/aps.54.1172
    [16] 苏慧敏, 郑锡光, 王霞, 许剑锋, 汪河洲. 计算机模拟偏振对激光全息的影响. 物理学报, 2002, 51(5): 1044-1048. doi: 10.7498/aps.51.1044
    [17] 于美文, 张存林. 光致各向异性记录介质偏振全息图的透射矩阵. 物理学报, 1992, 41(5): 759-765. doi: 10.7498/aps.41.759
    [18] C. S. IH, 王永昭, 吴继宗, 相连钦. 计算机产生全息光学元件用于校正椭圆高斯激光束. 物理学报, 1986, 35(2): 220-227. doi: 10.7498/aps.35.220
    [19] 蔡履中, 张幼文. 彩虹全息图成象的傅里叶分析. 物理学报, 1982, 31(8): 1020-1029. doi: 10.7498/aps.31.1020
    [20] 张幼文, 蔡履中, 朱伟光. 彩虹全息图和普通全息图的空间频率带宽. 物理学报, 1982, 31(4): 427-436. doi: 10.7498/aps.31.427
计量
  • 文章访问数:  4000
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-19
  • 修回日期:  2015-03-24
  • 刊出日期:  2015-06-05

基于液晶空间光调制器的全息显示

  • 1. 东南大学电子科学与工程学院, 南京 210096
    基金项目: 国家重点基础研究发展计划(批准号:2013CB328803)、国家自然科学基金(批准号:61372030,91333118)、国家高技术研究发展计划(批准号:2012AA03A302,2013AA013904)和江苏省普通高校研究生科研创新计划(批准号:CXZZ11_0152)资助的课题.

摘要: 在传统的纯相位全息显示系统中, 一般基于快速傅里叶变换(FFT)算法来计算相位全息图, 在FFT的计算中需要遵循Nyquist采样定理, 因此, 重建图像的尺寸往往受限于空间光调制器的固定采样率. 这个限制可以通过卷积算法或者两步菲涅耳衍射算法来解决, 但是需要使用多个FFT的计算, 导致计算量增大. 鉴于此, 提出了一种基于透镜的纯相位全息图计算方法. 在全息图的计算中, 通过透镜的成像原理建立一个采样率可变的虚拟全息面, 通过调节相应的距离参数使得在全息图的计算中可以任意调节原始图像的采样率, 摆脱了传统方法中液晶空间光调制器带宽积对重建图像尺寸的限制, 并且这种算法只需使用一次FFT就能达到变采样率的衍射计算, 大幅提高了全息图的计算速度. 数值模拟及光学实验结果证明了此方法可以在全息显示光学系统中清晰地重建不同尺寸的图像. 同时该系统可以有效地消除由空间光调制器的像素化结构带来的零级衍射.

English Abstract

参考文献 (14)

目录

    /

    返回文章
    返回