搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有限温度下一维Gaudin-Yang模型的热力学性质

张天宝 俞玄平 陈阿海

引用本文:
Citation:

有限温度下一维Gaudin-Yang模型的热力学性质

张天宝, 俞玄平, 陈阿海

Thermodynamic properties of one-dimensional Gaudin-Yang model at finite temperature

Zhang Tian-Bao, Yu Xuan-Ping, Chen A-Hai
PDF
导出引用
  • 本文通过数值求解有限温度下一维均匀费米Gaudin-Yang模型的热力学Bethe-ansatz方程, 研究了此模型的基本性质,得到了在给定的温度或给定的相互作用下, 化学势、相互作用、粒子密度和熵的相互变化图像. 对结果分析发现, 在给定温度和相互作用下, 熵随着化学势的变化有一个量子临界区域.
    The one-dimensional system interacting via a delta-function interparticle interaction is a very important one in cold atomic systems and has fundamental importance in many-body physics. In one dimension, due to the geometric confinement induced quantum correlations and quantum fluctuations, there may exist a number of unusual phenomena, such as spin-charge separation, effective fermionization and quantum criticality. This paper studies the basic properties of a uniform one-dimensional Gaudin-Yang model for fermions by solving the thermodynamic Bethe-ansatz equations by a numerical method. Numerically, we use the many-variable Newton’s method to solve the coupled equations. We analyze the physical properties, including density, interaction, temperature and entropy at a given temperature and a given interaction, separately. We know that a lot of researches are limited to zero temperature. However, we cannot reach the absolute zero temperature in the real cold atomic experiment. So it is important to deal with the finite temperature problems. We study the density and entropy as a function of the chemical potential, temperature and interaction and, then give the phase diagrams, respectively. We found that there is a quantum critical zone in the phase diagram of entropy, including the high temperature zone with thermal fluctuations and the Luttinger liquid zone with quantum fluctuations. For a given temperature and low chemical potential, the thermal fluctuations are the main factor in the entropy. With the increase of chemical potential, the system enters the quantum critical zone where the competitive effect between the thermal fluctuations and the quantum fluctuations exists. When the chemical potential is large enough, the quantum fluctuations become the main factor in the system’s entropy, and we get the Luttinger liquid phase. Our results can be further used in the finite temperature density-functional theory and to analyze the collective phenomena at a finite temperature.
    • 基金项目: 国家自然科学基金(批准号: 11174253, 11374266)和浙江省自然科学基金(批准号: R6110175)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174253, 11374266), and the Natural Science Foundation of Zhejiang Province, China (Grant No. R6110175).
    [1]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [2]

    Feshbach H 1958 Ann. Phys. 5 357

    [3]

    Tiesinga E, Verhaar B J, Stoof H T C 1993 Phys. Rev. A 47 4114

    [4]

    DeMarco B, Jin D S 1999 Science 285 1703

    [5]

    Köhl M, Moritz H, Stöferle T, Gnter K, Esslinger T 2005 Phys. Rev. Lett. 94 080403

    [6]

    Geng T, Yan S B, Wang Y H, Yang H J, Zhang T C, Wang J M 2005 Acta Phys. Sin. 54 5104 (in Chinese) [耿涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民 2005 物理学报 54 5104]

    [7]

    Cazalilla M A, Citro R, Giamarchi T, Orignac E, Rigol M 2011 Rev. Mod. Phys. 83 1405

    [8]

    Guan X W, Batchelor M T, Lee C H 2013 Rev. Mod. Phys. 85 1633

    [9]

    Gao X L 2010 Phys. Rev. B 81 104306

    [10]

    Li W, Gao X L, Kollath C, Polini M 2008 Phys. Rev. B 78 195109

    [11]

    Xu Z J, Liu X Y 2011 Acta Phys. Sin. 60 120305 (in Chinese) [徐志君, 刘夏吟 2011 物理学报 60 120305]

    [12]

    Astrakharchik G E, Blume D, Giorgini S, Pitaevskii L P 2004 Phys. Rev. Lett. 93 050402

    [13]

    van Amerongen A H, van Es J J P, Wicke P, Kheruntsyan K V, van Druten N J 2008 Phys. Rev. Lett. 100 090402

    [14]

    Moritz H, Stöferle T, Köhl M, Esslinger T 2003 Phys. Rev. Lett. 91 250402

    [15]

    Yang C N 1967 Phys. Rev. Lett. 19 1312

    [16]

    Gaudin M 1967 Phys. Lett. A 24 55

    [17]

    Menotti C, Stringari S 2002 Phys. Rev. A 66 043610

    [18]

    Gao X L, Asgari R 2008 Phys. Rev. A 77 033604

    [19]

    Gao X L, Polini M, Asgari R, Tosi M P 2006 Phys. Rev. A 73 033609

    [20]

    Guan L M, Chen S, Wang Y P, Ma Z Q 2009 Phys. Rev. Lett. 102 160402

    [21]

    Takahashi M 1971 Prog. Theor. Phys. 46 1388

    [22]

    Hu H, Gao X L, Liu X J 2014 Phys. Rev. A 90 013622

    [23]

    Lee J Y, Guan X W, Sakai K, Batchelor M T 2012 Phys. Rev. B 85 085414

    [24]

    Chen Y Y, Jiang Y Z, Guan X W, Zhou Q 2014 Nat. Commun. 5

    [25]

    Hoffman M D, Javernick P, Loheac A C, Porter W J, Anderson E R, Drut J E 2014 arXiv:1410.7370vl

    [26]

    Zhao E, Guan X W, Liu W V, Batchelor M T, Oshikawa M 2009 Phys. Rev. Lett. 103 140404

    [27]

    Batchelor M T, Foerster A, Guan X W, Kuhn C C N 2010 J. Stat. Mech. P12014

    [28]

    Klmper A, Pâţu O I 2011 Phys. Rev. A 84 051604

    [29]

    Kheruntsyan K V, Gangardt D M, Drummond P D, Shlyapnikov G V 2003 Phys. Rev. Lett. 91 040403

    [30]

    Kheruntsyan K V, Gangardt D M, Drummond P D, Shlyapnikov G V 2005 Phys. Rev. A 71 053615

    [31]

    Takahashi M 1972 Prog. Theor. Phys. 47 69

    [32]

    Usuki T, Kawakami N, Okiji A 1989 Phys. Lett. A 135 476

    [33]

    Usuki T, Kawakami N, Okiji A 1990 J.Phys. Soc. Jpn. 59 1357

    [34]

    Suzuki M 1985 Phys. Rev. B 31 2957

    [35]

    Suzuki M, Inoue M 1987 Prog. Theor. Phys. 78 787

    [36]

    Jttner G, Klmper A, Suzuki J 1998 Nucl. Phys. B 522 471

    [37]

    Klmper A, Bariev R Z 1996 Nucl. Phys. B 458 623

    [38]

    Takahashi M, Shiroishi M 2002 Phys. Rev. B 65 165104

    [39]

    Khatami E, Rigol M 2011 Phys. Rev. A 84 053611

    [40]

    Wolak M J, Rousseau V G, Miniatura C, Grémaud B, Scalettar R T, Batrouni G G 2010 Phys. Rev. A 82 013614

    [41]

    Snyder A, Tanabe I, De Silva T 2011 Phys. Rev. A 83 063632

    [42]

    Carmelo J M P, Gu S J, Sampaio M J 2014 J. Phys. 47 255004

    [43]

    Carmelo J M P, Gu S J, Sacramento P D 2013 Ann. Phys. 339 484

    [44]

    Chen F, Ying H P, Xu T F, Li W Z 1994 Acta Phys. Sin. 43 1672 (in Chinese) [陈锋, 应和平, 徐铁锋, 李文铸 1994 物理学报 43 1672]

    [45]

    Gao X L, Chen A H, Tokatly I V, Kurth S 2012 Phys. Rev. B 86 235139

    [46]

    Campo V L 2014 arXiv:1407.6726vl

    [47]

    Olshanii M 1998 Phys. Rev. Lett. 81 938

    [48]

    Dunjko V, Lorent V, Olshanii M 2001 Phys. Rev. Lett. 86 5413

    [49]

    Hu J H, Wang J J, Gao X L, Okumura M, Igarashi R, Yamada S, Machida M 2010 Phys. Rev. B 82 014202

    [50]

    Wei F X,Gao X L 2014 Journal of Zhejiang Normal University (Nat. Sci.) 37 54 (in Chinese) [卫福霞, 高先龙 2014 浙江师范大学学报(自然科学版) 37 54]

  • [1]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198

    [2]

    Feshbach H 1958 Ann. Phys. 5 357

    [3]

    Tiesinga E, Verhaar B J, Stoof H T C 1993 Phys. Rev. A 47 4114

    [4]

    DeMarco B, Jin D S 1999 Science 285 1703

    [5]

    Köhl M, Moritz H, Stöferle T, Gnter K, Esslinger T 2005 Phys. Rev. Lett. 94 080403

    [6]

    Geng T, Yan S B, Wang Y H, Yang H J, Zhang T C, Wang J M 2005 Acta Phys. Sin. 54 5104 (in Chinese) [耿涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民 2005 物理学报 54 5104]

    [7]

    Cazalilla M A, Citro R, Giamarchi T, Orignac E, Rigol M 2011 Rev. Mod. Phys. 83 1405

    [8]

    Guan X W, Batchelor M T, Lee C H 2013 Rev. Mod. Phys. 85 1633

    [9]

    Gao X L 2010 Phys. Rev. B 81 104306

    [10]

    Li W, Gao X L, Kollath C, Polini M 2008 Phys. Rev. B 78 195109

    [11]

    Xu Z J, Liu X Y 2011 Acta Phys. Sin. 60 120305 (in Chinese) [徐志君, 刘夏吟 2011 物理学报 60 120305]

    [12]

    Astrakharchik G E, Blume D, Giorgini S, Pitaevskii L P 2004 Phys. Rev. Lett. 93 050402

    [13]

    van Amerongen A H, van Es J J P, Wicke P, Kheruntsyan K V, van Druten N J 2008 Phys. Rev. Lett. 100 090402

    [14]

    Moritz H, Stöferle T, Köhl M, Esslinger T 2003 Phys. Rev. Lett. 91 250402

    [15]

    Yang C N 1967 Phys. Rev. Lett. 19 1312

    [16]

    Gaudin M 1967 Phys. Lett. A 24 55

    [17]

    Menotti C, Stringari S 2002 Phys. Rev. A 66 043610

    [18]

    Gao X L, Asgari R 2008 Phys. Rev. A 77 033604

    [19]

    Gao X L, Polini M, Asgari R, Tosi M P 2006 Phys. Rev. A 73 033609

    [20]

    Guan L M, Chen S, Wang Y P, Ma Z Q 2009 Phys. Rev. Lett. 102 160402

    [21]

    Takahashi M 1971 Prog. Theor. Phys. 46 1388

    [22]

    Hu H, Gao X L, Liu X J 2014 Phys. Rev. A 90 013622

    [23]

    Lee J Y, Guan X W, Sakai K, Batchelor M T 2012 Phys. Rev. B 85 085414

    [24]

    Chen Y Y, Jiang Y Z, Guan X W, Zhou Q 2014 Nat. Commun. 5

    [25]

    Hoffman M D, Javernick P, Loheac A C, Porter W J, Anderson E R, Drut J E 2014 arXiv:1410.7370vl

    [26]

    Zhao E, Guan X W, Liu W V, Batchelor M T, Oshikawa M 2009 Phys. Rev. Lett. 103 140404

    [27]

    Batchelor M T, Foerster A, Guan X W, Kuhn C C N 2010 J. Stat. Mech. P12014

    [28]

    Klmper A, Pâţu O I 2011 Phys. Rev. A 84 051604

    [29]

    Kheruntsyan K V, Gangardt D M, Drummond P D, Shlyapnikov G V 2003 Phys. Rev. Lett. 91 040403

    [30]

    Kheruntsyan K V, Gangardt D M, Drummond P D, Shlyapnikov G V 2005 Phys. Rev. A 71 053615

    [31]

    Takahashi M 1972 Prog. Theor. Phys. 47 69

    [32]

    Usuki T, Kawakami N, Okiji A 1989 Phys. Lett. A 135 476

    [33]

    Usuki T, Kawakami N, Okiji A 1990 J.Phys. Soc. Jpn. 59 1357

    [34]

    Suzuki M 1985 Phys. Rev. B 31 2957

    [35]

    Suzuki M, Inoue M 1987 Prog. Theor. Phys. 78 787

    [36]

    Jttner G, Klmper A, Suzuki J 1998 Nucl. Phys. B 522 471

    [37]

    Klmper A, Bariev R Z 1996 Nucl. Phys. B 458 623

    [38]

    Takahashi M, Shiroishi M 2002 Phys. Rev. B 65 165104

    [39]

    Khatami E, Rigol M 2011 Phys. Rev. A 84 053611

    [40]

    Wolak M J, Rousseau V G, Miniatura C, Grémaud B, Scalettar R T, Batrouni G G 2010 Phys. Rev. A 82 013614

    [41]

    Snyder A, Tanabe I, De Silva T 2011 Phys. Rev. A 83 063632

    [42]

    Carmelo J M P, Gu S J, Sampaio M J 2014 J. Phys. 47 255004

    [43]

    Carmelo J M P, Gu S J, Sacramento P D 2013 Ann. Phys. 339 484

    [44]

    Chen F, Ying H P, Xu T F, Li W Z 1994 Acta Phys. Sin. 43 1672 (in Chinese) [陈锋, 应和平, 徐铁锋, 李文铸 1994 物理学报 43 1672]

    [45]

    Gao X L, Chen A H, Tokatly I V, Kurth S 2012 Phys. Rev. B 86 235139

    [46]

    Campo V L 2014 arXiv:1407.6726vl

    [47]

    Olshanii M 1998 Phys. Rev. Lett. 81 938

    [48]

    Dunjko V, Lorent V, Olshanii M 2001 Phys. Rev. Lett. 86 5413

    [49]

    Hu J H, Wang J J, Gao X L, Okumura M, Igarashi R, Yamada S, Machida M 2010 Phys. Rev. B 82 014202

    [50]

    Wei F X,Gao X L 2014 Journal of Zhejiang Normal University (Nat. Sci.) 37 54 (in Chinese) [卫福霞, 高先龙 2014 浙江师范大学学报(自然科学版) 37 54]

  • [1] 刘妮, 黄珊, 李军奇, 梁九卿. 有限温度下腔光机械系统中N个二能级原子的相变和热力学性质. 物理学报, 2019, 68(19): 193701. doi: 10.7498/aps.68.20190347
    [2] 张荣, 卢灿灿, 李倩文, 刘伟, 白龙. 线性不可逆热力学框架下一个无限尺寸热源而有限尺寸冷源的制冷机的性能分析. 物理学报, 2018, 67(4): 040502. doi: 10.7498/aps.67.20172010
    [3] 王彦成, 邱吴劼, 杨宏亮, 席丽丽, 杨炯, 张文清. 基于第一性原理分子动力学的填充方钴矿热输运性质及微观过程的研究. 物理学报, 2018, 67(1): 016301. doi: 10.7498/aps.67.20171406
    [4] 陆展鹏, 魏兴波, 刘天帅, 陈阿海, 高先龙. 有限温度下一维Hubbard模型的化学势泛函理论研究. 物理学报, 2017, 66(12): 126701. doi: 10.7498/aps.66.126701
    [5] 袁都奇. 囚禁有限unitary费米气体的热力学性质. 物理学报, 2016, 65(18): 180302. doi: 10.7498/aps.65.180302
    [6] 赵翠兰, 王丽丽, 赵丽丽. 有限深抛物势量子盘中极化子的激发态性质. 物理学报, 2015, 64(18): 186301. doi: 10.7498/aps.64.186301
    [7] 王美姣, 夏云杰. 在有限温度下运用弱测量保护量子纠缠. 物理学报, 2015, 64(24): 240303. doi: 10.7498/aps.64.240303
    [8] 赵旭, 赵兴东, 景辉. 利用光晶格自旋链中磁振子的激发模拟有限温度下光子的动力学 Casimir 效应. 物理学报, 2013, 62(6): 060302. doi: 10.7498/aps.62.060302
    [9] 郝大鹏, 唐刚, 夏辉, 韩奎, 寻之朋. 含遮蔽抛射沉积模型的有限尺寸效应. 物理学报, 2011, 60(3): 038102. doi: 10.7498/aps.60.038102
    [10] 陈贺胜. 带有2+1味道Wilson费米子的格点量子色动力学在有限温度、有限密度下的相变. 物理学报, 2009, 58(10): 6791-6797. doi: 10.7498/aps.58.6791
    [11] 苏 杰, 王继锁, 梁宝龙, 张晓燕. 介观电容耦合LC电路在有限温度下的能量及热效应. 物理学报, 2008, 57(11): 7216-7220. doi: 10.7498/aps.57.7216
    [12] 邓 强, 颜 骏. 有限温度下的二维暗能量星模型. 物理学报, 2008, 57(7): 3978-3982. doi: 10.7498/aps.57.3978
    [13] 谢彦波, 汪秉宏, 全宏俊, 杨伟松, 王卫宁. EZ模型中的有限尺寸效应. 物理学报, 2003, 52(10): 2399-2403. doi: 10.7498/aps.52.2399
    [14] 熊元生, 易林, 姚凯伦. 量子Sherrington-Kirkpatrick自旋玻璃模型的热力学性质——各向异性和磁场影响. 物理学报, 1994, 43(12): 2052-2058. doi: 10.7498/aps.43.2052
    [15] 黄东, 翁永刚. 一种具有铁磁与反铁磁相互作用Ising模型的热力学性质. 物理学报, 1994, 43(7): 1172-1176. doi: 10.7498/aps.43.1172
    [16] 杜英磊, 吴柏枚. ZrO2涂层热性质的弧光光热分析技术和有限差分热流模型研究. 物理学报, 1994, 43(11): 1821-1827. doi: 10.7498/aps.43.1821
    [17] 陈锋, 应和平, 徐铁锋, 李文铸. 二维半充满Hubbard模型有限温度下绝缘体──金属相变的研究. 物理学报, 1994, 43(10): 1672-1676. doi: 10.7498/aps.43.1672
    [18] 李国强. 有限温度自洽半经典方程及其虚时迭代解. 物理学报, 1991, 40(2): 175-181. doi: 10.7498/aps.40.175
    [19] 李国强, 徐躬耦. 用有限温度自洽半经典方法研究热核上巨共振的性质. 物理学报, 1989, 38(9): 1413-1421. doi: 10.7498/aps.38.1413
    [20] 熊小明, 周世勋. 分数量子Hall效应的有限集团研究. 物理学报, 1987, 36(12): 1630-1634. doi: 10.7498/aps.36.1630
计量
  • 文章访问数:  2917
  • PDF下载量:  172
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-04
  • 修回日期:  2015-03-18
  • 刊出日期:  2015-08-05

有限温度下一维Gaudin-Yang模型的热力学性质

  • 1. 浙江师范大学物理系, 金华 321004;
  • 2. 伦敦大学学院物理与天文学系, 伦敦 WC1E 6BT
    基金项目: 国家自然科学基金(批准号: 11174253, 11374266)和浙江省自然科学基金(批准号: R6110175)资助的课题.

摘要: 本文通过数值求解有限温度下一维均匀费米Gaudin-Yang模型的热力学Bethe-ansatz方程, 研究了此模型的基本性质,得到了在给定的温度或给定的相互作用下, 化学势、相互作用、粒子密度和熵的相互变化图像. 对结果分析发现, 在给定温度和相互作用下, 熵随着化学势的变化有一个量子临界区域.

English Abstract

参考文献 (50)

目录

    /

    返回文章
    返回