搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

银纳米颗粒/多孔硅复合材料的制备与气敏性能研究

严达利 李申予 刘士余 竺云

引用本文:
Citation:

银纳米颗粒/多孔硅复合材料的制备与气敏性能研究

严达利, 李申予, 刘士余, 竺云

Preparation and gas-sensing properties of the silver nanoparticles/porous silicon composite

Yan Da-Li, Li Shen-Yu, Liu Shi-Yu, Zhu Yun
PDF
导出引用
  • 采用双槽电化学腐蚀法以电阻率为10-15 Ω·cm的p型晶向的单晶硅片制备了孔径约为1.5 μm, 孔深约为15-20 μm的p型多孔硅, 并以此多孔硅作为基底采用无电沉积法通过调控沉积时间在其表面沉积了不同厚度的银纳米颗粒薄膜. 采用扫描电子显微镜和X 射线衍射仪表征了银纳米颗粒/多孔硅复合材料的形貌和微观结构, 结果表明银纳米颗粒较均匀的分布于多孔硅的表面上且沉积时间对产物的形貌有重要影响. 采用静态配气法在室温下研究了银纳米颗粒/多孔硅复合材料对NH3的气敏性能. 气敏测试结果表明沉积时间对产物的气敏性能影响较大. 当沉积时间较短时, 适量银纳米颗粒掺杂的多孔硅复合材料由于其较高的比表面积以及特殊的形貌和结构, 对NH3气体表现出较高的灵敏度、优良的响应/恢复性能. 室温下, 其对50 ppm 的NH3气体的气敏灵敏度可以达到5.8左右.
    The p-type porous silicon layer with the aperture about 1.5 microns and hole depth about 15-20 microns is prepared by electrochemical etching of a p-type monocrystalline silicon wafer with a resistivity 10-15 Ω·cm and along [100] orientation in a double-tank cell which consists of the electrolyte (volume ratio HF: DMF=1:2). Silver nanoparticles film with different thickness has been deposited on porous silicon by the electroless deposition for different deposition times. Morphology and microstructure of the silver nanoparticles/porous silicon composite are studied by scanning electron microscope and X ray diffracmeter. Result indicates that the silver nanoparticles are uniformly distributed on the surface of porous silicon and the deposition time has an important influence on the morphology of the composite. The gas-sensing properties of the silver nanoparticles/porous silicon composite to NH3 are tested at room temperature by the static volumetric method. Results show that the deposition time has a significant impact on the gas-sensing properties of the silver nanoparticles/porous silicon. In a short deposition time, the composite with an appropriate amount of silver nanoparticles doped on the porous silicon shows good gas-sensing properties to NH3 with high sensitivity, fast response-recovery characteristic due to the high specific surface area and special microstructure. At room temperature, the gas sensor has a sensitivity of about 5.8 to 50 ppm NH3.
    • 基金项目: 国家自然科学基金(批准号:11104203)和天津师范大学博士基金(批准号:52XB1416)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11104203), and the Tianjin Normal University Doctoral Foundation, China (Grant No. 52XB1416).
    [1]

    Chen H Q, Hu M, Zeng J, Wang W D 2012 Chinese Physics B 21 58201

    [2]

    Li M D, Hu M, Zeng P, Ma S Y, Yan W J, Qin Y X 2013 Electrochim Acta 108 167

    [3]

    Li M D, Hu M, Liu Q L, Ma S Y, Sun P 2013 Appl Surf Sci. 268 188

    [4]

    Ozdemir S, Gole J L 2010 Sensor Actuat B-Chem. 151 274

    [5]

    Razi F, Rahimi F 2008 Sensor Actuat B-Chem. 132 40

    [6]

    Ma S Y, Hu M, Zeng P, Li M D, Yan W J, Li C Q 2013 Mater Lett. 112 12

    [7]

    Zeng P, Zhang P, Hu M, Ma S Y, Yan W J 2014 Chinese Physics B 23 58103

    [8]

    Ali N K, Hashim M R, Aziz A A 2008 Solid State Electron. 52 1071

    [9]

    Yang H B, Hu M, Zhang W, Zhang X R, Li D J, Wang M X 2007 Acta Phys. Sin. 56 4032 (in Chinese) [杨海波, 胡明, 张伟, 张绪瑞, 李德军, 王明霞 2007 物理学报 56 4032]

    [10]

    Sun P, Hu M, Liu B, Sun F Y, Xu L J 2011 Acta Phys. Sin. 60 050704 (in Chinese) [孙鹏, 胡明, 刘博, 孙凤云, 许路加 2011 物理学报 60 050704]

    [11]

    Balucani M, Nenzi P, Chubenko E, Klyshko A, Bondarenko V 2011 Journal of Nanoparticle Research. 13 5985

    [12]

    Ma S Y, Hu M, Zeng P, Li M D, Yan W J, Qin Y X 2014 Sensor Actuat B-Chem. 192 341

    [13]

    Ma S Y, Hu M, Zeng P, Yan W J, Li M D 2013 Mater Lett. 99 57

    [14]

    Kanungo J, Saha H, Basu S 2010 Sensor Actuat B-Chem. 147 128

    [15]

    Yan W J, Hu M, Zeng P, Ma S Y, Li M D 2014 Appl. Surf. Sci. 292 551

    [16]

    S. Ozdemir, J. L. Gole 2010 Sensor Actuat B-Chem. 151 274

    [17]

    Yan D L, Hu M, Li S Y, Liang J R, Wu Y Q, Ma S Y 2014 Electrochim Acta. 115 297

    [18]

    Mareš J, Krištofik J, Hulicius E 1995 Thin Solid Films. 255 272

    [19]

    Hu M, Liu Q L, Jia D L, Li M D 2013 Acta Phys. Sin. 62 057102 (in Chinese) [胡明, 刘青林, 贾丁立, 李明达 2013 物理学报 62 057102]

    [20]

    Sun P, Hu M, Li M D, Ma S Y 2012 Acta Physico-Chimica Sinica. 02 489

    [21]

    Baratto C, Sberveglieri G, Comini E, Faglia G, Benussi G, Ferrara V La, Quercia L, Francia G Di, Guidi V, Vincenzi D, Boscarino D, Rigato V 2000 Sensor Actuat B-Chem. 68 74

    [22]

    Salonen J, Lehto V P, Laine E 1997 Appl. Surf. Sci. 120 191.

  • [1]

    Chen H Q, Hu M, Zeng J, Wang W D 2012 Chinese Physics B 21 58201

    [2]

    Li M D, Hu M, Zeng P, Ma S Y, Yan W J, Qin Y X 2013 Electrochim Acta 108 167

    [3]

    Li M D, Hu M, Liu Q L, Ma S Y, Sun P 2013 Appl Surf Sci. 268 188

    [4]

    Ozdemir S, Gole J L 2010 Sensor Actuat B-Chem. 151 274

    [5]

    Razi F, Rahimi F 2008 Sensor Actuat B-Chem. 132 40

    [6]

    Ma S Y, Hu M, Zeng P, Li M D, Yan W J, Li C Q 2013 Mater Lett. 112 12

    [7]

    Zeng P, Zhang P, Hu M, Ma S Y, Yan W J 2014 Chinese Physics B 23 58103

    [8]

    Ali N K, Hashim M R, Aziz A A 2008 Solid State Electron. 52 1071

    [9]

    Yang H B, Hu M, Zhang W, Zhang X R, Li D J, Wang M X 2007 Acta Phys. Sin. 56 4032 (in Chinese) [杨海波, 胡明, 张伟, 张绪瑞, 李德军, 王明霞 2007 物理学报 56 4032]

    [10]

    Sun P, Hu M, Liu B, Sun F Y, Xu L J 2011 Acta Phys. Sin. 60 050704 (in Chinese) [孙鹏, 胡明, 刘博, 孙凤云, 许路加 2011 物理学报 60 050704]

    [11]

    Balucani M, Nenzi P, Chubenko E, Klyshko A, Bondarenko V 2011 Journal of Nanoparticle Research. 13 5985

    [12]

    Ma S Y, Hu M, Zeng P, Li M D, Yan W J, Qin Y X 2014 Sensor Actuat B-Chem. 192 341

    [13]

    Ma S Y, Hu M, Zeng P, Yan W J, Li M D 2013 Mater Lett. 99 57

    [14]

    Kanungo J, Saha H, Basu S 2010 Sensor Actuat B-Chem. 147 128

    [15]

    Yan W J, Hu M, Zeng P, Ma S Y, Li M D 2014 Appl. Surf. Sci. 292 551

    [16]

    S. Ozdemir, J. L. Gole 2010 Sensor Actuat B-Chem. 151 274

    [17]

    Yan D L, Hu M, Li S Y, Liang J R, Wu Y Q, Ma S Y 2014 Electrochim Acta. 115 297

    [18]

    Mareš J, Krištofik J, Hulicius E 1995 Thin Solid Films. 255 272

    [19]

    Hu M, Liu Q L, Jia D L, Li M D 2013 Acta Phys. Sin. 62 057102 (in Chinese) [胡明, 刘青林, 贾丁立, 李明达 2013 物理学报 62 057102]

    [20]

    Sun P, Hu M, Li M D, Ma S Y 2012 Acta Physico-Chimica Sinica. 02 489

    [21]

    Baratto C, Sberveglieri G, Comini E, Faglia G, Benussi G, Ferrara V La, Quercia L, Francia G Di, Guidi V, Vincenzi D, Boscarino D, Rigato V 2000 Sensor Actuat B-Chem. 68 74

    [22]

    Salonen J, Lehto V P, Laine E 1997 Appl. Surf. Sci. 120 191.

  • [1] 李东珂, 贺冰彦, 陈坤权, 皮明雨, 崔玉亭, 张丁可. Au纳米颗粒负载WO3纳米花复合结构的二甲苯气敏性能. 物理学报, 2019, 68(19): 198101. doi: 10.7498/aps.68.20190678
    [2] 李酽, 李娇, 陈丽丽, 连晓雪, 朱俊武. 外电场极化对纳米氧化锌拉曼活性及气敏性能的影响. 物理学报, 2018, 67(14): 140701. doi: 10.7498/aps.67.20180182
    [3] 江智宇, 王子仪, 王金金, 张荣君, 郑玉祥, 陈良尧, 王松有. 银纳米颗粒及阵列光传输性质的理论研究. 物理学报, 2016, 65(20): 207802. doi: 10.7498/aps.65.207802
    [4] 张玮祎, 胡明, 刘星, 李娜, 闫文君. 硅纳米线/氧化钒纳米棒复合材料的制备与气敏性能研究. 物理学报, 2016, 65(9): 090701. doi: 10.7498/aps.65.090701
    [5] 严达利, 李申予, 刘士余, 竺云. 银纳米颗粒/多孔硅复合材料的制备与气敏性能研究. 物理学报, 2015, 64(13): 137104. doi: 10.7498/aps.64.137104
    [6] 陈颖, 范卉青, 卢波. 带多孔硅表面缺陷腔的半无限光子晶体Tamm态及其折射率传感机理. 物理学报, 2014, 63(24): 244207. doi: 10.7498/aps.63.244207
    [7] 张铮, 徐智谋, 孙堂友, 徐海峰, 陈存华, 彭静. 纳米压印多孔硅模板的研究. 物理学报, 2014, 63(1): 018102. doi: 10.7498/aps.63.018102
    [8] 胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋. 微流控技术制备ZnO纳米线阵列及其气敏特性. 物理学报, 2014, 63(20): 207102. doi: 10.7498/aps.63.207102
    [9] 杨振岭, 刘玉强, 杨延强. 银纳米颗粒对四苯基卟啉Q带荧光寿命的延长. 物理学报, 2012, 61(3): 037805. doi: 10.7498/aps.61.037805
    [10] 韩涛, 孟凡英, 张松, 汪建强, 程雪梅. 银纳米颗粒减反射特性的理论研究. 物理学报, 2011, 60(2): 027303. doi: 10.7498/aps.60.027303
    [11] 许路加, 胡明, 杨海波, 杨孟琳, 张洁. 基于微结构参数建模的多孔硅绝热层热导率研究. 物理学报, 2010, 59(12): 8794-8800. doi: 10.7498/aps.59.8794
    [12] 李卓昕, 王丹妮, 王宝义, 薛德胜, 魏龙, 秦秀波. 水蒸气退火多孔硅发光性能的正电子谱学研究. 物理学报, 2010, 59(12): 8915-8919. doi: 10.7498/aps.59.8915
    [13] 杨海波, 胡 明, 张 伟, 张绪瑞, 李德军, 王明霞. 基于纳米压痕法的多孔硅硬度及杨氏模量与微观结构关系研究. 物理学报, 2007, 56(7): 4032-4038. doi: 10.7498/aps.56.4032
    [14] 邸玉贤, 计欣华, 胡 明, 秦玉文, 陈金龙. 基片曲率法在多孔硅薄膜残余应力检测中的应用. 物理学报, 2006, 55(10): 5451-5454. doi: 10.7498/aps.55.5451
    [15] 邱学军, 张云鹏, 何正红, 白 浪, 刘国磊, 王 跃, 陈 鹏, 熊祖洪. 矫顽力可调的多孔硅基Fe膜. 物理学报, 2006, 55(11): 6101-6107. doi: 10.7498/aps.55.6101
    [16] 白 莹, 兰燕娜, 莫育俊. 拉曼光谱法计算多孔硅样品的温度. 物理学报, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [17] 吴青松, 赵 岩, 张彩碚, 李 峰. 片状三角形银纳米颗粒的自组织行为与光学特性. 物理学报, 2005, 54(3): 1452-1456. doi: 10.7498/aps.54.1452
    [18] 谢 耩, 温建忠, 汪国平, 王建波. 聚合物表面银纳米颗粒的大面积均匀沉积及其应用. 物理学报, 2005, 54(1): 242-245. doi: 10.7498/aps.54.242
    [19] 徐大印, 刘彦平, 何志巍, 方泽波, 刘雪芹, 王印月. 多孔硅衬底上溅射沉积SiC:Tb薄膜的光致发光行为. 物理学报, 2004, 53(8): 2694-2698. doi: 10.7498/aps.53.2694
    [20] 彭爱华, 谢二庆, 姜 宁, 张志敏, 李 鹏, 贺德衍. 稀土(Tb,Gd)掺杂多孔硅的光致发光性能研究. 物理学报, 2003, 52(7): 1792-1796. doi: 10.7498/aps.52.1792
计量
  • 文章访问数:  3296
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-26
  • 修回日期:  2015-02-26
  • 刊出日期:  2015-07-05

银纳米颗粒/多孔硅复合材料的制备与气敏性能研究

  • 1. 天津师范大学物理与材料科学学院, 天津 300387;
  • 2. 河北工业大学海洋科学与工程学院, 天津 300401
    基金项目: 国家自然科学基金(批准号:11104203)和天津师范大学博士基金(批准号:52XB1416)资助的课题.

摘要: 采用双槽电化学腐蚀法以电阻率为10-15 Ω·cm的p型晶向的单晶硅片制备了孔径约为1.5 μm, 孔深约为15-20 μm的p型多孔硅, 并以此多孔硅作为基底采用无电沉积法通过调控沉积时间在其表面沉积了不同厚度的银纳米颗粒薄膜. 采用扫描电子显微镜和X 射线衍射仪表征了银纳米颗粒/多孔硅复合材料的形貌和微观结构, 结果表明银纳米颗粒较均匀的分布于多孔硅的表面上且沉积时间对产物的形貌有重要影响. 采用静态配气法在室温下研究了银纳米颗粒/多孔硅复合材料对NH3的气敏性能. 气敏测试结果表明沉积时间对产物的气敏性能影响较大. 当沉积时间较短时, 适量银纳米颗粒掺杂的多孔硅复合材料由于其较高的比表面积以及特殊的形貌和结构, 对NH3气体表现出较高的灵敏度、优良的响应/恢复性能. 室温下, 其对50 ppm 的NH3气体的气敏灵敏度可以达到5.8左右.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回