搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

甚多束激光直接驱动靶面辐照均匀性研究

邓学伟 周维 袁强 代万俊 胡东霞 朱启华 景峰

引用本文:
Citation:

甚多束激光直接驱动靶面辐照均匀性研究

邓学伟, 周维, 袁强, 代万俊, 胡东霞, 朱启华, 景峰

Capsule illumination uniformity illuminated by direct laser-driven irradiation from several tens of directions

Deng Xue-Wei, Zhou Wei, Yuan Qiang, Dai Wan-Jun, Hu Dong-Xia, Zhu Qi-Hua, Jing Feng
PDF
导出引用
  • 针对甚多束激光辐照下的直接驱动靶面光强均匀分布开展了系统研究. 利用球谐模分析选定了可实现均匀辐照的靶面弹着点极角分布, 并通过数值模拟确定了以等效48束激光直接驱动辐照下靶面三环弹着点极角位置分别为22.4, 47.7和73.6. 基于特定装置构型分析了实现极向直接驱动时对各路激光指向的修正, 并对光束截面焦斑进行了优化, 实现了极向直接驱动下的靶面均匀辐照.
    Capsule illumination uniformity obtained by direct driving lasers from several tens of directions is studied systematically. The best polar angles of the three focal spot rings on the capsule are determined to be 22.4, 47.7, and 73.6by a spherical-harmonic mode analysis and a numerical simulation. Based on the configuration of indirect laser driven facility, we have optimized the beam re-directions and the focal spot distributions for polar direct drive, which smooth successfully the illumination distribution on the capsule.Laser driven inertial confinement fusion is an important way to achieve controllable nuclear fusion for human beings, which includes two laser-driven schemesdirectly driving and indirectly driving scheme. Since the indirect driving scheme considerably relaxes the strict requirements for laser performance and decreases the engineering difficulties, the main laser facilities around the world have adopted the indirect driving scheme, such as the National Ignition Facility in the U. S., the Laser Megajoule in France, and the SG series laser drivers in China.Meanwhile, scientists keep developing the key technologies for directly driving and have made great progress. For example, the fast ignition and shock ignition are two new methods to achieve fusion ignition in the direct driving scheme, which attracted lots of attention in the past few years. However, the main laser drivers for inertial confinement fusion research are configured as indirect drivers, which are not suitable for direct driving experiments. So a compromising suggestion was proposed that by redirecting the lasers, changing the laser energy distributions, designing new type of targets, and so on, a radiation field which is very close to a direct driving radiation field can be simulated in a laser facility that is configured as an indirect driver. This is the so called polar direct drive method that provides a feasible way for primary researches on direct driving technologies in an indirect laser driver. Such experiments have already been conducted in the National Ignition Facility.In China, the large indirect laser driver with an output capability in the level of hundreds kilojoule will finish its engineering construction and routinely operate for physical experiments soon. To achieve a good polar direct drive performance in this laser facility is much more difficult than in previous smaller laser drivers. In this paper, capsule illumination uniformity by directly driving laser from several tens of directions is studied systematically. The best polar angles of the three focal spot rings on the capsule are determined to be 22.4, 47.7, and 73.6 by a spherical-harmonic mode analysis and a numerical simulation. Based on the configuration of indirect driving laser facility, we have optimized the beam re-directions and the focal spot distributions for polar direct drive, which successfully smoothes the illumination distribution on the capsule.
      通信作者: 胡东霞, dongxia.hu@163.com
    • 基金项目: 国家高技术研究发展计划资助的课题.
      Corresponding author: Hu Dong-Xia, dongxia.hu@163.com
    • Funds: Project supported by the National High Technology Research and Development Program of China.
    [1]

    Basov N G 1993 Quantum Electron 23 262

    [2]

    Wang G C 1987 Chin. J. Lasers 14 641

    [3]

    Nakai S, Mima K 2004 Rep. Prog. Phys. 67 321

    [4]

    Bodner S E, McCrory R L, Afeyan B B 1998 Phys. Plasmas 5 1901

    [5]

    Froula D H, Divol L, London R A, Berger R L, Dppner T, Meezan N B, Ralph J, Ross J S, Suter L J, Glenzer S H 2010 Phys. Plasmas 17 056302

    [6]

    Brumfiel G 2012 Nature 491 170

    [7]

    Eimerl D 1995 LLNL UCRL-ID-120758

    [8]

    Beti R, Zhou C D, Anderson K S, Perkins L J, Theobald W, Solodov A A 2007 Phys. Rev Lett. 98 155001

    [9]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626

    [10]

    Skupsky S, Marozas J A, Craxton R S, Betti R, Collins T J B, Delettrez J A, Goncharov V N, McKenty P W, Radha P B, Boehly T R, Knauer J P, Marshall F J, Herding D R, Kilkenny J D, Meyerhofer D D, Sangster T C, McCrory R L 2004 Phys. Plasmas 11 2763

    [11]

    Weilacher F, Radha P B, Collins T J B, Marozas J A 2015 Phys. Plasmas 22 032701

    [12]

    Temporal M, Canaud B, Garbett W J, Ramis R, Weber S 2014 High Power Laser Science and Engineering 2 12

    [13]

    Li P, Zhao R C, Wang W, Geng Y C, Pu Y D, Su J Q 2014 Acta Phys. Sin. 63 085206(in Chinese) [李平, 赵润昌, 王伟, 耿远超, 蒲昱东, 粟敬钦 2014 物理学报 63 085206]

    [14]

    Xiao J, Lv B D, Feng G Y, Yuan X D 1998 Acta Opt. Sin. 18 1646 (in Chinese) [肖峻, 吕百达, 冯国英, 袁晓东 1998 光学学报 18 1646]

    [15]

    Pollaine S M, Haan S W 1997 UCRL-LR-105821-98-1

    [16]

    Li P, Jia H T, Wang F, Liu L Q, Su J Q 2009 Chin. J. Lasers 36 318 (in Chinese) [李平, 贾怀庭, 王芳, 刘兰琴, 粟敬钦 2009 中国激光 36 318]

    [17]

    Wang M C, Zhu M Z, Chen G, Wu W K, Fu X N 2013 Laser Optoelectronics Progress50 011403 (in Chinese) [王美聪, 朱明智, 陈刚, 吴文凯, 傅学农 2013 激光与光电子学进展 50 011403]

    [18]

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 015202(in Chinese) [袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰 2011 物理学报 60 015202]

  • [1]

    Basov N G 1993 Quantum Electron 23 262

    [2]

    Wang G C 1987 Chin. J. Lasers 14 641

    [3]

    Nakai S, Mima K 2004 Rep. Prog. Phys. 67 321

    [4]

    Bodner S E, McCrory R L, Afeyan B B 1998 Phys. Plasmas 5 1901

    [5]

    Froula D H, Divol L, London R A, Berger R L, Dppner T, Meezan N B, Ralph J, Ross J S, Suter L J, Glenzer S H 2010 Phys. Plasmas 17 056302

    [6]

    Brumfiel G 2012 Nature 491 170

    [7]

    Eimerl D 1995 LLNL UCRL-ID-120758

    [8]

    Beti R, Zhou C D, Anderson K S, Perkins L J, Theobald W, Solodov A A 2007 Phys. Rev Lett. 98 155001

    [9]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Woodworth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626

    [10]

    Skupsky S, Marozas J A, Craxton R S, Betti R, Collins T J B, Delettrez J A, Goncharov V N, McKenty P W, Radha P B, Boehly T R, Knauer J P, Marshall F J, Herding D R, Kilkenny J D, Meyerhofer D D, Sangster T C, McCrory R L 2004 Phys. Plasmas 11 2763

    [11]

    Weilacher F, Radha P B, Collins T J B, Marozas J A 2015 Phys. Plasmas 22 032701

    [12]

    Temporal M, Canaud B, Garbett W J, Ramis R, Weber S 2014 High Power Laser Science and Engineering 2 12

    [13]

    Li P, Zhao R C, Wang W, Geng Y C, Pu Y D, Su J Q 2014 Acta Phys. Sin. 63 085206(in Chinese) [李平, 赵润昌, 王伟, 耿远超, 蒲昱东, 粟敬钦 2014 物理学报 63 085206]

    [14]

    Xiao J, Lv B D, Feng G Y, Yuan X D 1998 Acta Opt. Sin. 18 1646 (in Chinese) [肖峻, 吕百达, 冯国英, 袁晓东 1998 光学学报 18 1646]

    [15]

    Pollaine S M, Haan S W 1997 UCRL-LR-105821-98-1

    [16]

    Li P, Jia H T, Wang F, Liu L Q, Su J Q 2009 Chin. J. Lasers 36 318 (in Chinese) [李平, 贾怀庭, 王芳, 刘兰琴, 粟敬钦 2009 中国激光 36 318]

    [17]

    Wang M C, Zhu M Z, Chen G, Wu W K, Fu X N 2013 Laser Optoelectronics Progress50 011403 (in Chinese) [王美聪, 朱明智, 陈刚, 吴文凯, 傅学农 2013 激光与光电子学进展 50 011403]

    [18]

    Yuan Q, Hu D X, Zhang X, Zhao J P, Hu S D, Huang W H, Wei X F 2011 Acta Phys. Sin. 60 015202(in Chinese) [袁强, 胡东霞, 张鑫, 赵军普, 胡思得, 黄文会, 魏晓峰 2011 物理学报 60 015202]

  • [1] 田博宇, 钟哲强, 隋展, 张彬, 袁孝. 基于涡旋光束的超快速角向集束匀滑方案. 物理学报, 2019, 68(2): 024207. doi: 10.7498/aps.68.20181361
    [2] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法. 物理学报, 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [3] 肖德龙, 戴自换, 孙顺凯, 丁宁, 张扬, 邬吉明, 尹丽, 束小建. Z箍缩动态黑腔驱动靶丸内爆动力学. 物理学报, 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [4] 陈鹏玮, 厉彦忠, 李翠, 代飞, 丁岚, 辛毅. 低温冷冻靶温度动态特性的数值模拟研究. 物理学报, 2017, 66(19): 190702. doi: 10.7498/aps.66.190702
    [5] 李宏勋, 张锐, 朱娜, 田小程, 许党朋, 周丹丹, 宗兆玉, 范孟秋, 谢亮华, 郑天然, 李钊历. 基于光束参量优化实现直接驱动靶丸均匀辐照. 物理学报, 2017, 66(10): 105202. doi: 10.7498/aps.66.105202
    [6] 晏骥, 张兴, 郑建华, 袁永腾, 康洞国, 葛峰骏, 陈黎, 宋仔峰, 袁铮, 蒋炜, 余波, 陈伯伦, 蒲昱东, 黄天晅. 氘氘-塑料靶丸变收缩比内爆物理实验研究. 物理学报, 2015, 64(12): 125203. doi: 10.7498/aps.64.125203
    [7] 黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟. 黑腔冷冻靶传热与自然对流的数值模拟研究. 物理学报, 2015, 64(21): 215201. doi: 10.7498/aps.64.215201
    [8] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究. 物理学报, 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [9] 宁成, 丰志兴, 薛创. Z箍缩驱动动态黑腔中的基本能量转移特征. 物理学报, 2014, 63(12): 125208. doi: 10.7498/aps.63.125208
    [10] 景龙飞, 黄天晅, 江少恩, 陈伯伦, 蒲昱东, 胡峰, 程书博. 神光-Ⅱ和神光-Ⅲ原型内爆对称性实验的模型分析. 物理学报, 2012, 61(10): 105205. doi: 10.7498/aps.61.105205
    [11] 晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. X射线相衬成像技术应用于高能量密度物理条件下内爆靶丸诊断. 物理学报, 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [12] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展. 物理学报, 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [13] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测. 物理学报, 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [14] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究. 物理学报, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [15] 程文雍, 张小民, 粟敬钦, 赵圣之, 董军, 李平, 周丽丹. 利用运动光束抑制高功率激光小尺度自聚焦. 物理学报, 2009, 58(10): 7012-7016. doi: 10.7498/aps.58.7012
    [16] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究. 物理学报, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [17] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究. 物理学报, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [18] 姚 欣, 高福华, 李剑峰, 张怡霄, 温圣林, 郭永康. 光束取样光栅强激光近场调制及诱导损伤研究. 物理学报, 2008, 57(8): 4891-4897. doi: 10.7498/aps.57.4891
    [19] 姚 欣, 高福华, 温圣林, 张怡霄, 李剑峰, 郭永康. 谐波分离和光束取样集成光学元件强激光近场调制及损伤特性研究. 物理学报, 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
    [20] 杨洪琼, 杨建伦, 温树槐, 王根兴, 郭玉芝, 唐正元, 牟维兵, 马驰. 激光直接驱动内爆DT燃料面密度诊断. 物理学报, 2001, 50(12): 2408-2412. doi: 10.7498/aps.50.2408
计量
  • 文章访问数:  2776
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-19
  • 修回日期:  2015-06-11
  • 刊出日期:  2015-10-05

甚多束激光直接驱动靶面辐照均匀性研究

  • 1. 中国工程物理研究院激光聚变研究中心, 绵阳 621900
  • 通信作者: 胡东霞, dongxia.hu@163.com
    基金项目: 国家高技术研究发展计划资助的课题.

摘要: 针对甚多束激光辐照下的直接驱动靶面光强均匀分布开展了系统研究. 利用球谐模分析选定了可实现均匀辐照的靶面弹着点极角分布, 并通过数值模拟确定了以等效48束激光直接驱动辐照下靶面三环弹着点极角位置分别为22.4, 47.7和73.6. 基于特定装置构型分析了实现极向直接驱动时对各路激光指向的修正, 并对光束截面焦斑进行了优化, 实现了极向直接驱动下的靶面均匀辐照.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回