搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用差分收敛法研究NaLi分子部分电子态的完全振动能谱

郑小丰 樊群超 孙卫国 范志祥 张燚 付佳 李博

引用本文:
Citation:

用差分收敛法研究NaLi分子部分电子态的完全振动能谱

郑小丰, 樊群超, 孙卫国, 范志祥, 张燚, 付佳, 李博

Full vibrational spectra of some electronic states of NaLi molecule using a difference converging method

Zheng Xiao-Feng, Fan Qun-Chao, Sun Wei-Guo, Fan Zhi-Xiang, Zhang Yi, Fu Jia, Li Bo
PDF
导出引用
  • 基于双核分子振动能级的普遍表达式和差分收敛法(difference converging method, DCM), 利用微分思想将DCM应用于双核分子体系完全振动能谱的研究中. 应用DCM方法, 分别选用实验上获得的一组(10条)精确的振动能级, 对NaLi分子31Π, 41Π 和A1Σ+电子态进行了研究, DCM的研究结果正确重复了已知数据并预测出了在实验上未能获得的包含高激发态在内的完全振动能谱数据, 同时计算得到了这3个电子态的振动光谱常数.
    For most diatomic electronic states, it is very difficult to obtain the accurate vibrational spectra of the highly-excited states directly by using the modern experimental techniques and quantum theories. Based on the general expression of diatomic molecular vibrational energy, the difference converging method (DCM) is used to give a new analytical expression in this paper. By using ten known vibrational energies, the full vibrational spectra, the vibrational spectroscopic constants of the highly-excited states, and the dissociation energy can be predicted for a diatomic electronic state. In this study, the full vibrational spectra of the electronic states 31Π, 41Π and A1Σ+ of NaLi molecule are studied with the DCM and the new formula. Results show that all the vibrational levels given in the experiments can be reproduced with an error rate less than 0.02 percent in our study. In addition, By comparing with the reported experimental results, we find 26, 45 and 31 new vibrational levels for 31Π, 41Π and A1Σ+ of NaLi molecule, respectively.
    • 基金项目: 四川省教育厅重点基金(批准号: 14ZA0117)、国家自然科学基金(批准号: 11204244)、 四川省大学生创新创业训练计划(批准号: 201310623017)、西华大学青年学者培养计划、原子与分子物理重点学科和高性能科学计算四川省高校重点实验室基金资助的课题.
    • Funds: Project supported by the Key Project of Education Department of Sichuan Province, China (Grant No. 14ZA0117), the National Natural Science Foundation of China (Grant No. 11204244), the National Undergraduate Innovation and Entrepreneurship Training Programs of Sichuan Province, China (Grant No. 201310623017), the Yong Scholars Training Program of Xihua University, China, the Research Fund of Key Disciplines of Atomic and Molecular Physics, and the Fund of Key Laboratory of Advanced Scientific Computation of Sichuan Provice, China.
    [1]

    Le Roy R J, Lam W H 1980 Chem. Phys. Lett. 71 544

    [2]

    Gan W, Wu D, Zhang Z, Feng R R, Wang H F 2006 J. Chem. Phys. 124 114705

    [3]

    Woutersen S, Hamm P 2000 J. Phys. Chem. B 104 11316

    [4]

    Wang H Y, Zhu Z H, Meng D Q, Wang X L 2003 Chin. Phys. 12 154

    [5]

    Gao T, Wang H Y, Yi Y G, Tan M L, Zhu Z H, Sun Y, Wang X L, Fu Y B 1999 Acta Phys. Sin. 48 2222 (in Chinese) [高涛, 王红艳, 易有根, 谭明亮, 朱正和, 孙颖, 汪小琳, 傅依备 1999 物理学报 48 2222]

    [6]

    Doyle J, Friedrich B, Krems R V, Masnou-Seeuws F 2004 Eur. Phys. J. D 31 149

    [7]

    Dulieu O, Raoult M, Tiemann E 2006 J. Phys. B: At. Mol. Opt. 39 19

    [8]

    Wippel V, Binder C, Windholz L 2002 Eur. Phys. J. D 21 101

    [9]

    Bang N H, Grochola A, Jastrzebski W, Kowalczyk P 2007 Chem. Phys. Lett. 440 199

    [10]

    Boldyrev A I, Simons J, Schleyer P R 1993 J. Chem. Phys. 99 8793

    [11]

    Bertoncini P J, Das G, Wahl A C 1970 J. Chem. Phys. 52 5112

    [12]

    Fellows C E, Gutterres R F, Tavares A D 1995 Chem. Phys. Lett. 236 538

    [13]

    Wang R J, Chen Y Q, Cai P P, Lu J J, Bi Z Y, Yang X H, Ma L S 1999 Chem. Phys. Lett. 307 339

    [14]

    Fellows C E 1991 J. Chem. Phys. 94 5855

    [15]

    Bang N H, Grochola A, Jastrzebski W, Kowalczyk P 2009 Opt. Mater. 31 527

    [16]

    Rosmus P, Meyer W 1976 J. Chem. Phys. 65 492

    [17]

    Engelke F, Ennen G, Meiwes K H 1982 Chem. Phys. 66 391

    [18]

    Fan Q C, Sun W G, Feng H 2009 Spectrochim. Acta A 74 911

    [19]

    Bang N H, Jastrzebski W, Kowalczyk P 2005 J. Mol. Spectrosc. 233 290

    [20]

    Jastrzebski W, Kowalczyk P, Nadyak R, Pashov A 2002 Spectrochim. Acta A 58 2193

    [21]

    Fellows C E, Verges J, Amiot C 1988 Mol. Phys. 63 1115

    [22]

    Petsalakis I D, Tzeli D, Theodorakopoulos G 2008 J. Chem. Phys. 129 54306

    [23]

    Petsalakis I D, Theodorakopoulos G, Grochol A, Kowalczyk P, Jastrzebski W 2009 Chem. Phys. 362 130

    [24]

    Bang N H 2008 Ph. D. Dissertation (Warsaw: University of Warsaw)

    [25]

    Hessel M M 1971 Phys. Rev. Lett. 26 215

    [26]

    Schmidt-Mink I, Mller W, Meyer W 1984 Chem. Phys. Lett. 112 120

    [27]

    Marques J M C, Prudente F V, Pereira F B, Almeida M M, Maniero A M, Fellows C E 2008 J. Phys. B: At. Mol. Opt. 41 85103

    [28]

    Sun W G, Wang Q, Zhang Y, Li H D, Feng H, Fan Q C 2015 J. Phys. B: At. Mol. Opt. 48 125201

    [29]

    Sun W G, Fan Q C, Li H D, Feng H 2011 Spectrochim. Acta A 79 35

    [30]

    Fan Q C, Sun W G, Li H D, Feng H 2011 Acta Phys. Sin. 60 063301 (in Chinese) [樊群超, 孙卫国, 李会东, 冯灏 2011 物理学报 60 063301]

    [31]

    Sun W G, Hou S L, Feng H, Ren W Y 2002 J. Mol. Spectrosc. 215 93

    [32]

    Ren W Y, Sun W G, Hou S L, Feng H 2005 Sci. China G 48 385

    [33]

    Sun W G, Ren W Y, Hou S L, Feng H 2005 Mol. Phys. 103 2335

    [34]

    Ren W Y, Sun W G 2005 Acta Phys. Sin. 54 594 (in Chinese) [任维义, 孙卫国 2005 物理学报 54 594]

    [35]

    Fellows C E 1989 J. Mol. Spectrosc. 136 369

  • [1]

    Le Roy R J, Lam W H 1980 Chem. Phys. Lett. 71 544

    [2]

    Gan W, Wu D, Zhang Z, Feng R R, Wang H F 2006 J. Chem. Phys. 124 114705

    [3]

    Woutersen S, Hamm P 2000 J. Phys. Chem. B 104 11316

    [4]

    Wang H Y, Zhu Z H, Meng D Q, Wang X L 2003 Chin. Phys. 12 154

    [5]

    Gao T, Wang H Y, Yi Y G, Tan M L, Zhu Z H, Sun Y, Wang X L, Fu Y B 1999 Acta Phys. Sin. 48 2222 (in Chinese) [高涛, 王红艳, 易有根, 谭明亮, 朱正和, 孙颖, 汪小琳, 傅依备 1999 物理学报 48 2222]

    [6]

    Doyle J, Friedrich B, Krems R V, Masnou-Seeuws F 2004 Eur. Phys. J. D 31 149

    [7]

    Dulieu O, Raoult M, Tiemann E 2006 J. Phys. B: At. Mol. Opt. 39 19

    [8]

    Wippel V, Binder C, Windholz L 2002 Eur. Phys. J. D 21 101

    [9]

    Bang N H, Grochola A, Jastrzebski W, Kowalczyk P 2007 Chem. Phys. Lett. 440 199

    [10]

    Boldyrev A I, Simons J, Schleyer P R 1993 J. Chem. Phys. 99 8793

    [11]

    Bertoncini P J, Das G, Wahl A C 1970 J. Chem. Phys. 52 5112

    [12]

    Fellows C E, Gutterres R F, Tavares A D 1995 Chem. Phys. Lett. 236 538

    [13]

    Wang R J, Chen Y Q, Cai P P, Lu J J, Bi Z Y, Yang X H, Ma L S 1999 Chem. Phys. Lett. 307 339

    [14]

    Fellows C E 1991 J. Chem. Phys. 94 5855

    [15]

    Bang N H, Grochola A, Jastrzebski W, Kowalczyk P 2009 Opt. Mater. 31 527

    [16]

    Rosmus P, Meyer W 1976 J. Chem. Phys. 65 492

    [17]

    Engelke F, Ennen G, Meiwes K H 1982 Chem. Phys. 66 391

    [18]

    Fan Q C, Sun W G, Feng H 2009 Spectrochim. Acta A 74 911

    [19]

    Bang N H, Jastrzebski W, Kowalczyk P 2005 J. Mol. Spectrosc. 233 290

    [20]

    Jastrzebski W, Kowalczyk P, Nadyak R, Pashov A 2002 Spectrochim. Acta A 58 2193

    [21]

    Fellows C E, Verges J, Amiot C 1988 Mol. Phys. 63 1115

    [22]

    Petsalakis I D, Tzeli D, Theodorakopoulos G 2008 J. Chem. Phys. 129 54306

    [23]

    Petsalakis I D, Theodorakopoulos G, Grochol A, Kowalczyk P, Jastrzebski W 2009 Chem. Phys. 362 130

    [24]

    Bang N H 2008 Ph. D. Dissertation (Warsaw: University of Warsaw)

    [25]

    Hessel M M 1971 Phys. Rev. Lett. 26 215

    [26]

    Schmidt-Mink I, Mller W, Meyer W 1984 Chem. Phys. Lett. 112 120

    [27]

    Marques J M C, Prudente F V, Pereira F B, Almeida M M, Maniero A M, Fellows C E 2008 J. Phys. B: At. Mol. Opt. 41 85103

    [28]

    Sun W G, Wang Q, Zhang Y, Li H D, Feng H, Fan Q C 2015 J. Phys. B: At. Mol. Opt. 48 125201

    [29]

    Sun W G, Fan Q C, Li H D, Feng H 2011 Spectrochim. Acta A 79 35

    [30]

    Fan Q C, Sun W G, Li H D, Feng H 2011 Acta Phys. Sin. 60 063301 (in Chinese) [樊群超, 孙卫国, 李会东, 冯灏 2011 物理学报 60 063301]

    [31]

    Sun W G, Hou S L, Feng H, Ren W Y 2002 J. Mol. Spectrosc. 215 93

    [32]

    Ren W Y, Sun W G, Hou S L, Feng H 2005 Sci. China G 48 385

    [33]

    Sun W G, Ren W Y, Hou S L, Feng H 2005 Mol. Phys. 103 2335

    [34]

    Ren W Y, Sun W G 2005 Acta Phys. Sin. 54 594 (in Chinese) [任维义, 孙卫国 2005 物理学报 54 594]

    [35]

    Fellows C E 1989 J. Mol. Spectrosc. 136 369

  • [1] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl-阴离子的光谱性质和跃迁性质. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211688
    [2] 黄多辉, 万明杰, 王藩侯, 杨俊升, 曹启龙, 王金花. GeS分子基态和低激发态的势能曲线与光谱性质. 物理学报, 2016, 65(6): 063102. doi: 10.7498/aps.65.063102
    [3] 仲亚军, 刘娇, 梁文强, 赵生妹. 针对多散斑图的差分压缩鬼成像方案研究. 物理学报, 2015, 64(1): 014202. doi: 10.7498/aps.64.014202
    [4] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. BCl分子X1Σ+, a3Π和A1Π态的光谱性质. 物理学报, 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
    [5] 黄多辉, 王藩侯, 杨俊升, 万明杰, 曹启龙, 杨明超. SnO分子的X1Σ+, a3Π和A1Π态的势能曲线与光谱性质. 物理学报, 2014, 63(8): 083102. doi: 10.7498/aps.63.083102
    [6] 张轶, 达新宇. 基于差分平稳时序的Ka波段雨衰预测. 物理学报, 2014, 63(6): 060203. doi: 10.7498/aps.63.060203
    [7] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. AlC分子 X4∑-和B4∑-电子态的光谱性质. 物理学报, 2013, 62(11): 113101. doi: 10.7498/aps.62.113101
    [8] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [9] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [10] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究. 物理学报, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [11] 邓伦华, 李传亮, 朱圆月, 何文艳, 陈扬骎. NO分子b4Σ--a4Πi(4,0)带的吸收光谱. 物理学报, 2012, 61(19): 194208. doi: 10.7498/aps.61.194208
    [12] 王杰敏, 孙金锋, 施德恒, 朱遵略, 李文涛. PH, PD和PT分子常数理论研究. 物理学报, 2012, 61(6): 063104. doi: 10.7498/aps.61.063104
    [13] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. SO+离子b4∑-态光谱常数和分子常数研究. 物理学报, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [14] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. 理论研究B2分子X3g-和A3u态的光谱性质. 物理学报, 2012, 61(20): 203101. doi: 10.7498/aps.61.203101
    [15] 张燚, 孙卫国, 付佳, 樊群超, 冯灏, 李会东. 用节点变分的代数方法研究双原子体系的完全振动能谱和离解能. 物理学报, 2012, 61(13): 133301. doi: 10.7498/aps.61.133301
    [16] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 物理学报, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [17] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [18] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [19] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数. 物理学报, 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [20] 张贵银, 靳一东. NO2分子的光学-光学双色双共振多光子离化谱. 物理学报, 2008, 57(1): 132-136. doi: 10.7498/aps.57.132
计量
  • 文章访问数:  2626
  • PDF下载量:  134
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-13
  • 修回日期:  2015-06-28
  • 刊出日期:  2015-10-05

用差分收敛法研究NaLi分子部分电子态的完全振动能谱

  • 1. 西华大学理学院先进计算研究中心, 成都 610039;
  • 2. 四川大学原子与分子物理研究所, 成都 610065
    基金项目: 四川省教育厅重点基金(批准号: 14ZA0117)、国家自然科学基金(批准号: 11204244)、 四川省大学生创新创业训练计划(批准号: 201310623017)、西华大学青年学者培养计划、原子与分子物理重点学科和高性能科学计算四川省高校重点实验室基金资助的课题.

摘要: 基于双核分子振动能级的普遍表达式和差分收敛法(difference converging method, DCM), 利用微分思想将DCM应用于双核分子体系完全振动能谱的研究中. 应用DCM方法, 分别选用实验上获得的一组(10条)精确的振动能级, 对NaLi分子31Π, 41Π 和A1Σ+电子态进行了研究, DCM的研究结果正确重复了已知数据并预测出了在实验上未能获得的包含高激发态在内的完全振动能谱数据, 同时计算得到了这3个电子态的振动光谱常数.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回