搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应力预释放对单晶硅片的压痕位错滑移的影响

赵泽钢 田达晰 赵剑 梁兴勃 马向阳 杨德仁

引用本文:
Citation:

应力预释放对单晶硅片的压痕位错滑移的影响

赵泽钢, 田达晰, 赵剑, 梁兴勃, 马向阳, 杨德仁

Effect of prior stress-relief on the gliding of indentation dislocations on silicon wafers

Zhao Ze-Gang, Tian Da-Xi, Zhao Jian, Liang Xing-Bo, Ma Xiang-Yang, Yang De-Ren
PDF
导出引用
  • 单晶硅片的压痕位错在一定温度下的滑移距离反映了硅片的机械强度. 压痕位错的滑移是受压痕的残余应力驱动的, 因此研究残余应力与位错滑移之间的关系具有重要的意义. 本文首先采用共聚焦显微拉曼术研究了单晶硅片压痕的残余应力经过300或500 ℃ 热处理后的预释放, 然后研究了上述应力预释放对压痕位错在后续较高温度(700–900 ℃)热处理过程中滑移的影响. 在未经应力预释放的情况下, 压痕位错在700–900 ℃热处理2 h后即可滑移至最大距离. 当经过上述预应力释放后, 位错在900 ℃热处理2 h后仍能达到上述最大距离, 但位错滑移速度明显降低; 而在700和800 ℃时热处理2 h后的滑移距离变小, 其减小幅度在预热处理温度为500 ℃时更为显著. 然而, 进一步的研究表明: 即使经过预应力释放, 只要足够地延长700和800 ℃ 的热处理时间, 位错滑移的最大距离几乎与未经预应力释放情形时的一样. 根据以上结果, 可以认为在压痕的残余应力大于位错在某一温度滑移所需临界应力的前提下, 压痕位错在某一温度滑移的最大距离与应力大小无关, 不过达到最大距离所需的时间随应力的减小而显著增长.
    The mechanical strengths of silicon wafers are crucial for the manufacturing yield of integrated circuits (ICs), which have received intensive attention over the years. With reducing the feature size of ICs, the mechanical strengths of silicon wafers become more significant. Actually, the gliding of indentation dislocations on single-crystalline silicon wafers at a given temperature reflects the mechanical strengths of silicon wafers. Since the gliding of indentation dislocations is driven by the residual stress around the indentation, the investigation on the correlation between the residual stress and dislocation gliding is of significance. In this paper, we first use micro-Raman microscopy to characterize the relief of stress around the indentation due to the annealling at 300 or 500 ℃. Then the effect of such a relief-stress on the gliding of indentation dislocations at 700-900 ℃ is investigated. In the case without the prior stress-relief, the indentation dislocations glide to the maximum distance after 2 h annealling at 700-900 ℃. With the prior stress-relief due to the annealling at 300 or 500 ℃, the indentation dislocations can still glide to the maximum distance after 2 h annealling at 900 ℃, however the gliding velocity significantly decreases and the gliding distance is remarkably reduced after 2 h annealling at 700 or 800 ℃. Such a reduction of gliding distance is most significant in the case of 700 ℃ annealling following the stress-relief with the 500 ℃/2 h annealling. Despite the prior stress-relief, as long as the annealing time at 700 or 800 ℃ is sufficiently extended, the indentation dislocations can glide to the maximum distance. In view of the above results, it is believed that the maximum gliding distance of indentation dislocations at a given temperature is independent of the values of residual stress around the indentation provided that the residual stresses are larger than the critical stress for driving the dislocation movement. Nevertheless, the annealing time for achieving the maximum gliding distance at a given temperature should be remarkably extended as the residual stresses around the indentation are relieved.
    • 基金项目: 国家自然科学基金(批准号: 60906001, 61274057)和国家科技重大专项(批准号: 2010ZX02301-003)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60906001, 61274057) and the National Science and Technology Major Project of China (Grant No. 2010ZX02301-003).
    [1]

    Hu S M 1973 Appl. Phys. Lett. 5 22

    [2]

    Hu S M 1975 J. Appl. Phys. 46 1470

    [3]

    Hu S M 1977 Appl. Phys. Lett. 3 31

    [4]

    Hu S M, Patrick W J 1975 J. Appl. Phys. 5 46

    [5]

    Yonenaga I 2005 J. Appl. Phys. 98 023517

    [6]

    Zeng Z D, Zeng Y H, Ma X Y, Yang D R 2011 J. Cryst. Growth. 324 93

    [7]

    Xu L M, Gao C, Dong P, Zhao J J, Ma X Y, Yang D R 2013 Acta Phys. Sin. 62 168101 (in Chinese) [徐嶺茂, 高超, 董鹏, 赵建江, 马向阳, 杨德仁 2013 物理学报 62 168101]

    [8]

    Lee S W, Danyluk S 1988 J. Mater. Sci. 1 23

    [9]

    Cook R F 2006 J. Mater. Sci. 3 41

    [10]

    Puech P, Pinel S, Jasinevicius R G, Pizani P S 2000 J. Appl. Phys. 8 88

    [11]

    Hu S M 1975 J. Appl. Phys. 4 46

    [12]

    Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209 (in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 物理学报 61 214209]

    [13]

    Deng Q, Ma Y, Yang X H, Ye L J, Zhang X Z, Zhang Q, Fu H W 2012 Acta Phys. Sin. 61 247701 (in Chinese) [邓泉, 马勇, 杨晓红, 叶利娟, 张学忠, 张起, 付宏伟 2012 物理学报 61 247701]

    [14]

    Hu S M 1978 J. Appl. Phys. 11 49

    [15]

    Sumino K, Yonenaga I 1993 Phys. Status. Solidi. A 138 573

    [16]

    Zeng Z D, Ma X Y, Yang D R 2010 J. Cryst. Growth 312 169

    [17]

    Zeng Z, Murphy J D, Falster R J, Ma X Y, Yang D R, Wilshaw P R 2011 J. Appl. Phys. 6 109

    [18]

    de Wolf I, Jian C, van Spengen W M 2001 Opt. Laser. Eng. 2 36

  • [1]

    Hu S M 1973 Appl. Phys. Lett. 5 22

    [2]

    Hu S M 1975 J. Appl. Phys. 46 1470

    [3]

    Hu S M 1977 Appl. Phys. Lett. 3 31

    [4]

    Hu S M, Patrick W J 1975 J. Appl. Phys. 5 46

    [5]

    Yonenaga I 2005 J. Appl. Phys. 98 023517

    [6]

    Zeng Z D, Zeng Y H, Ma X Y, Yang D R 2011 J. Cryst. Growth. 324 93

    [7]

    Xu L M, Gao C, Dong P, Zhao J J, Ma X Y, Yang D R 2013 Acta Phys. Sin. 62 168101 (in Chinese) [徐嶺茂, 高超, 董鹏, 赵建江, 马向阳, 杨德仁 2013 物理学报 62 168101]

    [8]

    Lee S W, Danyluk S 1988 J. Mater. Sci. 1 23

    [9]

    Cook R F 2006 J. Mater. Sci. 3 41

    [10]

    Puech P, Pinel S, Jasinevicius R G, Pizani P S 2000 J. Appl. Phys. 8 88

    [11]

    Hu S M 1975 J. Appl. Phys. 4 46

    [12]

    Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209 (in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 物理学报 61 214209]

    [13]

    Deng Q, Ma Y, Yang X H, Ye L J, Zhang X Z, Zhang Q, Fu H W 2012 Acta Phys. Sin. 61 247701 (in Chinese) [邓泉, 马勇, 杨晓红, 叶利娟, 张学忠, 张起, 付宏伟 2012 物理学报 61 247701]

    [14]

    Hu S M 1978 J. Appl. Phys. 11 49

    [15]

    Sumino K, Yonenaga I 1993 Phys. Status. Solidi. A 138 573

    [16]

    Zeng Z D, Ma X Y, Yang D R 2010 J. Cryst. Growth 312 169

    [17]

    Zeng Z, Murphy J D, Falster R J, Ma X Y, Yang D R, Wilshaw P R 2011 J. Appl. Phys. 6 109

    [18]

    de Wolf I, Jian C, van Spengen W M 2001 Opt. Laser. Eng. 2 36

  • [1] 王瑾, 贺新福, 曹晗, 贾丽霞, 豆艳坤, 杨文. 不同温度下bcc-Fe中螺位错滑移及其与½[\begin{document}${{11}}\bar {{1}}$\end{document}]位错环相互作用行为. 物理学报, 2021, 70(6): 068701. doi: 10.7498/aps.70.20201659
    [2] 汉芮岐, 宋海洋, 安敏荣, 李卫卫, 马佳丽. 石墨烯/铝基复合材料在纳米压痕过程中位错与石墨烯相互作用机制的模拟研究. 物理学报, 2021, 70(6): 066201. doi: 10.7498/aps.70.20201591
    [3] 孙玉鑫, 吴德凡, 赵统, 兰武, 杨德仁, 马向阳. 直拉硅单晶的机械强度: 锗和氮共掺杂的效应. 物理学报, 2021, 70(9): 098101. doi: 10.7498/aps.70.20201803
    [4] 胡兴健, 郑百林, 杨彪, 余金桂, 贺鹏飞, 岳珠峰. 初始压入位置对Ni基单晶合金纳米压痕影响研究. 物理学报, 2015, 64(7): 076201. doi: 10.7498/aps.64.076201
    [5] 高英俊, 全四龙, 邓芊芊, 罗志荣, 黄创高, 林葵. 剪切应变下刃型位错的滑移机理的晶体相场模拟. 物理学报, 2015, 64(10): 106104. doi: 10.7498/aps.64.106104
    [6] 胡兴健, 郑百林, 胡腾越, 杨彪, 贺鹏飞, 岳珠峰. 考虑相界效应的Ni基单晶合金纳米压痕模拟. 物理学报, 2014, 63(17): 176201. doi: 10.7498/aps.63.176201
    [7] 徐嶺茂, 高超, 董鹏, 赵建江, 马向阳, 杨德仁. 单晶硅片中的位错在快速热处理过程中的滑移. 物理学报, 2013, 62(16): 168101. doi: 10.7498/aps.62.168101
    [8] 郭巍巍, 任焕, 齐成军, 王小蒙, 李小武. 一个单滑移取向铜单晶体疲劳位错结构的热稳定性研究. 物理学报, 2012, 61(15): 156201. doi: 10.7498/aps.61.156201
    [9] 朱弢, 王崇愚, 干勇. 镍基单晶高温合金相界面错配位错网络的演化. 物理学报, 2009, 58(13): 156-S160. doi: 10.7498/aps.58.156
    [10] 赵庆兰, 黄依森, 唐鼎元. 三硼酸锂(LBO)单晶的位错研究. 物理学报, 1992, 41(2): 272-275. doi: 10.7498/aps.41.272
    [11] 麦振洪;葛培文;何杰;崔树范;贺楚光;马碧春;陈坚邦;王永鸿. GaAs单晶滑移位错X射线形貌术研究. 物理学报, 1989, 38(8): 1344-1347. doi: 10.7498/aps.38.1344
    [12] 施友纯, 刘光照, 仲维卓. 位错联系的应力场对晶体生长影响的蒙特-卡罗模拟. 物理学报, 1988, 37(4): 660-665. doi: 10.7498/aps.37.660
    [13] 涂相征. 热应力作用降低LPE层中的位错. 物理学报, 1983, 32(3): 315-324. doi: 10.7498/aps.32.315
    [14] 葛传珍, 徐秀英, 冯端. 直拉法生长的YAG单晶体中组分过冷引起的针状应力区和位错. 物理学报, 1981, 30(2): 218-223. doi: 10.7498/aps.30.218
    [15] 刘振茂, 王贵华. 区熔硅单晶中一种位错源. 物理学报, 1980, 29(9): 1164-1179. doi: 10.7498/aps.29.1164
    [16] 刘寄浙. PbFe12O19单晶体中的位错蚀斑研究. 物理学报, 1980, 29(5): 651-657. doi: 10.7498/aps.29.651
    [17] 晶体检验组. 掺钕钇铝石榴石单晶的位错研究. 物理学报, 1976, 25(4): 284-291. doi: 10.7498/aps.25.284
    [18] 郭可信, 张修睦. 铝镁合金中位错的运动与交滑移. 物理学报, 1966, 22(3): 257-269. doi: 10.7498/aps.22.257
    [19] 闵乃本, 吉光民, 冯端. 钨单晶体中位错的侵蚀斑. 物理学报, 1964, 20(11): 1182-1186. doi: 10.7498/aps.20.1182
    [20] 孙瑞蕃, М.П.沙斯柯里斯卡娅. 晶体中滑移的位错机构研究. 物理学报, 1960, 16(4): 229-240. doi: 10.7498/aps.16.229
计量
  • 文章访问数:  2990
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-10
  • 修回日期:  2015-06-16
  • 刊出日期:  2015-10-05

应力预释放对单晶硅片的压痕位错滑移的影响

  • 1. 浙江大学硅材料国家重点实验室, 浙江大学材料科学与工程学院, 杭州 310027;
  • 2. 浙江金瑞泓科技股份有限公司, 宁波 315800
    基金项目: 国家自然科学基金(批准号: 60906001, 61274057)和国家科技重大专项(批准号: 2010ZX02301-003)资助的课题.

摘要: 单晶硅片的压痕位错在一定温度下的滑移距离反映了硅片的机械强度. 压痕位错的滑移是受压痕的残余应力驱动的, 因此研究残余应力与位错滑移之间的关系具有重要的意义. 本文首先采用共聚焦显微拉曼术研究了单晶硅片压痕的残余应力经过300或500 ℃ 热处理后的预释放, 然后研究了上述应力预释放对压痕位错在后续较高温度(700–900 ℃)热处理过程中滑移的影响. 在未经应力预释放的情况下, 压痕位错在700–900 ℃热处理2 h后即可滑移至最大距离. 当经过上述预应力释放后, 位错在900 ℃热处理2 h后仍能达到上述最大距离, 但位错滑移速度明显降低; 而在700和800 ℃时热处理2 h后的滑移距离变小, 其减小幅度在预热处理温度为500 ℃时更为显著. 然而, 进一步的研究表明: 即使经过预应力释放, 只要足够地延长700和800 ℃ 的热处理时间, 位错滑移的最大距离几乎与未经预应力释放情形时的一样. 根据以上结果, 可以认为在压痕的残余应力大于位错在某一温度滑移所需临界应力的前提下, 压痕位错在某一温度滑移的最大距离与应力大小无关, 不过达到最大距离所需的时间随应力的减小而显著增长.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回