搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于色散补偿光纤的高速光纤光栅解调方法

李政颖 孙文丰 李子墨 王洪海

引用本文:
Citation:

基于色散补偿光纤的高速光纤光栅解调方法

李政颖, 孙文丰, 李子墨, 王洪海

A demodulation method of high-speed fiber Bragg grating based on dispersion-compensating fiber

Li Zheng-Ying, Sun Wen-Feng, Li Zi-Mo, Wang Hong-Hai
PDF
导出引用
  • 本文提出并论证了一种光纤光栅高速解调的新方法, 利用色散补偿光纤的色散效应, 将光纤光栅的波长漂移信息转换成时域信息. 采用脉冲激光器作为光源, 仅需一个光脉冲可获取单根光纤上所有光纤光栅的反射光脉冲, 再根据各个光栅反射回光脉冲的延时变化即可实现波长的解调. 本方法可用于准分布光纤光栅传感网络解调, 系统采用全光纤结构, 无需波长扫描, 大大提高了解调速度. 本文搭建了测试系统进行实验验证, 对3个光纤光栅组成的准分布式传感网络进行了解调, 实验结果表明, 解调出的光纤光栅布喇格波长线性度好, 解调速度最高可达1 MHz, 采样数据取10次平均后解调线性度可达0.9969, 解调误差约为27.8 pm.
    Fiber Bragg grating sensing is one of the most attractive researches in the field of optical fiber sensing. It has made considerable progress due to its advantages in high multiplexing, high precision, small size, light weight, good corrosion resistance and immunity to electromagnetic interference. However, the traditional fiber Bragg grating demodulation technology can hardly achieve high-speed demodulation of multiplexing gratings, which seriously limits its extensive application. A novel high-speed fiber Bragg grating demodulation method is proposed and demonstrated in this paper. Large dispersion will be generated when light going through the long-distance dispersion compensation fiber. Based on the dispersion effect of dispersion compensation fiber, a light beam of different wavelength will generate different time delay, and the wavelength shift of the fiber Bragg grating sensor is then transformed into time domain, and ultimately the fiber Bragg grating wavelength demodulation can be realized by measuring the delay of grating reflective light pulse. The reflective light pulse train of all the cascade fiber Bragg grating sensors can be obtained only through one pulse of light source. This method can be applied in all-fiber structure without wavelength scanning so that it can promote the demodulation speed greatly and can be applied to the demodulation of quasi-distributed fiber Bragg grating sensor network. Disturbing influence of dispersion compensating fibers can be eliminated by introducing the reference grating, and the demodulation process is immune to light intensity disturbance. A test system is set up to demodulate a quasi-distributed sensor network which is made up of three fiber Bragg grating sensors. Results show that the linearity of the demodulated wavelength is good and the demodulation speed can be up to 1 MHz. The demodulation linearity is about 0.9969, and the error is about 27.8 pm after 10 times average. The novel demodulation method proposed in this paper has been tested through theoretical analysis and experimental demonstration, its feasibility to realize high-speed demodulation of fiber grating has been proved, but significant improvements still can be made in the demodulation system. The next step of research work will focus on how to realize decoupling between the location information and the wavelength, to avoid the influence of temperature disturbance on wavelength demodulation, so as to further improve the wavelength resolution and demodulation accuracy.
      通信作者: 孙文丰, sunwenfeng@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61575149, 61205072)和湖北省自然科学基金(批准号:2012FFA104)资助的课题.
      Corresponding author: Sun Wen-Feng, sunwenfeng@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61575149, 61205072) and the Natural Science Foundation of Hubei Province, China under (Grant No. 2012FFA104).
    [1]

    Guan M Z, Wang X Z, Xin C J, Zhou Y H, Ma L Z 2015 Chin. Phys. Lett. 32 17401

    [2]

    Lee J R, Guan Y S, Tsuda H 2006 Smart Mater. Struct. 15 1429

    [3]

    Meng L J, Tan Y G, Zhou Z D, Liang B k, Yang W Y 2013 Chin. Mech. Eng. 24 980 (in Chinese) [孟丽君, 谭跃刚, 周祖德, 梁宝逵, 杨文玉 2013 中国机械工程 24 980]

    [4]

    Jiang X X 2014 Ph. D. Dissertation (Wuhan: Wuhan University of Technology) (in Chinese) [蒋熙馨 2014 博士学位论文(武汉: 武汉理工大学)]

    [5]

    Escaler X, Egusquiza E, Farhat M, Avellan F, Coussirat M 2006 Mech. Syst. Signal Pr. 20 983

    [6]

    Li Z Y, Zhou Z D, Tong X L Xiong T, Tang Z H, Cai L J, Zhao M 2012 Acta Opt. Sin. 32 0306007

    [7]

    Koo K P, Kersey A D 1995 J. Lightw. Technol.7 1243

    [8]

    Qiao X G, Ding F, Jia Z A, Fu H W, Yin X D, Zhou R, Song J 2011 Acta Phys. Sin. 60 074221 (in Chinese) [乔学光, 丁锋, 贾振安, 傅海威, 营旭东, 周锐, 宋娟 2011 物理学报 60 074221]

    [9]

    Liu B, Tong Z R, Chen S H, Zeng J, Kai G Y, Dong X Y, Yuan S Z, Zhao Q D 2004 Acta Opt. Sin. 24 199 (in Chinese) [刘波, 童峥嵘, 陈少华, 曾剑, 开桂云, 董孝义, 袁树忠, 赵启大 2004 光学学报 24 199]

    [10]

    Zhang D S, Guo D, Luo P, Jiang D S 2007 J. Trans. Technol. 20 311 (in Chinese) [张东生, 郭丹, 罗裴, 姜德生 2007 传感技术学报 20 311]

    [11]

    Zhang J L, Yu C X, Wang K R, Zhao D X, Lin M M, Li W 2009 Acta Phys. Sin. 58 3988 (in Chinese) [张锦龙, 余重秀, 王葵如, 赵德新, 林妹妹, 李成 2009 物理学报 58 3988]

    [12]

    Zhang X Q, Zhang X X, Cheng K, Xiang A P 2014 Chin. Phys. B 23 064207

    [13]

    Tian F, Zhang X G, Weng X, Xi L X, Zhang Y A, Zhang W B 2011 Chin. Phys. B 20 080702

  • [1]

    Guan M Z, Wang X Z, Xin C J, Zhou Y H, Ma L Z 2015 Chin. Phys. Lett. 32 17401

    [2]

    Lee J R, Guan Y S, Tsuda H 2006 Smart Mater. Struct. 15 1429

    [3]

    Meng L J, Tan Y G, Zhou Z D, Liang B k, Yang W Y 2013 Chin. Mech. Eng. 24 980 (in Chinese) [孟丽君, 谭跃刚, 周祖德, 梁宝逵, 杨文玉 2013 中国机械工程 24 980]

    [4]

    Jiang X X 2014 Ph. D. Dissertation (Wuhan: Wuhan University of Technology) (in Chinese) [蒋熙馨 2014 博士学位论文(武汉: 武汉理工大学)]

    [5]

    Escaler X, Egusquiza E, Farhat M, Avellan F, Coussirat M 2006 Mech. Syst. Signal Pr. 20 983

    [6]

    Li Z Y, Zhou Z D, Tong X L Xiong T, Tang Z H, Cai L J, Zhao M 2012 Acta Opt. Sin. 32 0306007

    [7]

    Koo K P, Kersey A D 1995 J. Lightw. Technol.7 1243

    [8]

    Qiao X G, Ding F, Jia Z A, Fu H W, Yin X D, Zhou R, Song J 2011 Acta Phys. Sin. 60 074221 (in Chinese) [乔学光, 丁锋, 贾振安, 傅海威, 营旭东, 周锐, 宋娟 2011 物理学报 60 074221]

    [9]

    Liu B, Tong Z R, Chen S H, Zeng J, Kai G Y, Dong X Y, Yuan S Z, Zhao Q D 2004 Acta Opt. Sin. 24 199 (in Chinese) [刘波, 童峥嵘, 陈少华, 曾剑, 开桂云, 董孝义, 袁树忠, 赵启大 2004 光学学报 24 199]

    [10]

    Zhang D S, Guo D, Luo P, Jiang D S 2007 J. Trans. Technol. 20 311 (in Chinese) [张东生, 郭丹, 罗裴, 姜德生 2007 传感技术学报 20 311]

    [11]

    Zhang J L, Yu C X, Wang K R, Zhao D X, Lin M M, Li W 2009 Acta Phys. Sin. 58 3988 (in Chinese) [张锦龙, 余重秀, 王葵如, 赵德新, 林妹妹, 李成 2009 物理学报 58 3988]

    [12]

    Zhang X Q, Zhang X X, Cheng K, Xiang A P 2014 Chin. Phys. B 23 064207

    [13]

    Tian F, Zhang X G, Weng X, Xi L X, Zhang Y A, Zhang W B 2011 Chin. Phys. B 20 080702

  • [1] 李科, 董明利, 袁配, 鹿利单, 孙广开, 祝连庆. 基于阵列波导光栅的光纤布拉格光栅解调技术综述. 物理学报, 2022, 71(9): 094207. doi: 10.7498/aps.71.20212063
    [2] 王鑫, 娄淑琴, 廉正刚. 空芯光子带隙光纤色散特性的实验研究. 物理学报, 2016, 65(19): 194212. doi: 10.7498/aps.65.194212
    [3] 臧鸽, 黄永清, 骆扬, 段晓峰, 任晓敏. 高速高饱和单行载流子光探测器的设计与分析. 物理学报, 2014, 63(20): 208502. doi: 10.7498/aps.63.208502
    [4] 王婷婷, 葛益娴, 常建华, 柯炜, 王鸣. 基于椭球封闭空气腔的光纤复合法布里-珀罗结构折射率传感特性研究. 物理学报, 2014, 63(24): 240701. doi: 10.7498/aps.63.240701
    [5] 陈翔, 张心贲, 祝贤, 程兰, 彭景刚, 戴能利, 李海清, 李进延. 色散补偿光子晶体光纤结构参数对其色散的影响. 物理学报, 2013, 62(4): 044222. doi: 10.7498/aps.62.044222
    [6] 王伟, 杨博, 宋鸿儒, 范岳. 八边形高双折射双零色散点光子晶体光纤特性分析. 物理学报, 2012, 61(14): 144601. doi: 10.7498/aps.61.144601
    [7] 王伟, 杨博. 菱形纤芯光子晶体光纤色散与双折射特性分析. 物理学报, 2012, 61(6): 064601. doi: 10.7498/aps.61.064601
    [8] 赵岩, 施伟华, 姜跃进. 中心外缺陷对带隙型光子晶体光纤色散特性的影响. 物理学报, 2010, 59(9): 6279-6283. doi: 10.7498/aps.59.6279
    [9] 黄小东, 张小民, 王建军, 许党朋, 张锐, 林宏焕, 邓颖, 耿远超, 余晓秋. 色散对高能激光光纤前端FM-AM效应的影响. 物理学报, 2010, 59(3): 1857-1862. doi: 10.7498/aps.59.1857
    [10] 尹经禅, 肖晓晟, 杨昌喜. 基于光纤四波混频波长转换和色散的慢光实验研究. 物理学报, 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [11] 李林栗, 冯国英, 杨浩, 周国瑞, 周昊, 朱启华, 王建军, 周寿桓. 纳米光纤的色散特性及其超连续谱产生. 物理学报, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [12] 赵兴涛, 侯蓝田, 刘兆伦, 王 伟, 魏红彦, 马景瑞. 改进的全矢量有效折射率方法分析光子晶体光纤的色散特性. 物理学报, 2007, 56(4): 2275-2280. doi: 10.7498/aps.56.2275
    [13] 谭中伟, 曹继红, 陈 勇, 刘 艳, 宁提纲, 简水生. 低串扰的多波长光纤光栅色散补偿器. 物理学报, 2007, 56(1): 274-279. doi: 10.7498/aps.56.274
    [14] 裴 丽, 宁提纲, 李唐军, 董小伟, 简水生. 高速光通信系统中光纤光栅色散补偿研究. 物理学报, 2005, 54(4): 1630-1635. doi: 10.7498/aps.54.1630
    [15] 刘玉玲, 卢振武. 亚波长衍射微透镜色散的数值分析. 物理学报, 2004, 53(6): 1782-1787. doi: 10.7498/aps.53.1782
    [16] 李曙光, 刘晓东, 侯蓝田. 一种晶体光纤基模色散特性的矢量法分析. 物理学报, 2004, 53(6): 1873-1879. doi: 10.7498/aps.53.1873
    [17] 李曙光, 刘晓东, 侯蓝田. 光子晶体光纤色散补偿特性的数值研究. 物理学报, 2004, 53(6): 1880-1886. doi: 10.7498/aps.53.1880
    [18] 任国斌, 王 智, 娄淑琴, 简水生. 高折射率芯Bragg光纤的色散特性研究. 物理学报, 2004, 53(6): 1862-1867. doi: 10.7498/aps.53.1862
    [19] 裴 丽, 简水生, 延凤平, 宁提纲, 简 伟, 李唐军. 4×10Gb/s 400km 啁啾光纤光栅色散补偿研究. 物理学报, 2003, 52(3): 615-619. doi: 10.7498/aps.52.615
    [20] 刘雪明, 刘 琳, 孙小菡, 张明德. 石英光纤中二次非线性级联波长转换的理论分析. 物理学报, 2000, 49(9): 1792-1797. doi: 10.7498/aps.49.1792
计量
  • 文章访问数:  3277
  • PDF下载量:  199
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-26
  • 修回日期:  2015-07-10
  • 刊出日期:  2015-12-05

基于色散补偿光纤的高速光纤光栅解调方法

  • 1. 武汉理工大学, 光纤传感技术国家工程实验室, 武汉 430070;
  • 2. 武汉理工大学, 光纤传感技术与信息处理教育部重点实验室, 武汉 430070
  • 通信作者: 孙文丰, sunwenfeng@whut.edu.cn
    基金项目: 国家自然科学基金(批准号: 61575149, 61205072)和湖北省自然科学基金(批准号:2012FFA104)资助的课题.

摘要: 本文提出并论证了一种光纤光栅高速解调的新方法, 利用色散补偿光纤的色散效应, 将光纤光栅的波长漂移信息转换成时域信息. 采用脉冲激光器作为光源, 仅需一个光脉冲可获取单根光纤上所有光纤光栅的反射光脉冲, 再根据各个光栅反射回光脉冲的延时变化即可实现波长的解调. 本方法可用于准分布光纤光栅传感网络解调, 系统采用全光纤结构, 无需波长扫描, 大大提高了解调速度. 本文搭建了测试系统进行实验验证, 对3个光纤光栅组成的准分布式传感网络进行了解调, 实验结果表明, 解调出的光纤光栅布喇格波长线性度好, 解调速度最高可达1 MHz, 采样数据取10次平均后解调线性度可达0.9969, 解调误差约为27.8 pm.

English Abstract

参考文献 (13)

目录

    /

    返回文章
    返回