搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

雪崩倍增GaAs光电导太赫兹辐射源研究进展

施卫 闫志巾

引用本文:
Citation:

雪崩倍增GaAs光电导太赫兹辐射源研究进展

施卫, 闫志巾

Research progress on avalanche multiplication GaAs photoconductive terahertz emitter

Shi Wei, Yan Zhi-Jin
PDF
导出引用
  • 在飞秒激光激励下用GaAs光电导开关作为太赫兹(THz)辐射天线, 已经广泛用于太赫兹时域光谱系统, 但目前国际上都是使用GaAs光电导开关的线性工作模式, 而GaAs光电导开关的雪崩倍增工作模式所输出的超快电脉冲功率容量远大于其线性工作模式, 迄今为止, 还没有人提出用雪崩倍增机理的GaAs 光电导开关作为辐射源产生THz电磁辐射. 本文探讨了用 雪崩倍增工作模式的GaAs光电导开关作为光电导天线产生THz电磁波的可能性及研究进展. 通过理论分析及实验研究, 在实验上实现了: 1) 利用nJ量级飞秒激光触发GaAs光电导天线, 可以进入雪崩倍增工作模式; 2) 利用光激发电荷畴的猝灭模式, 可以使GaAs光电导天线载流子雪崩倍增模式的延续时间(lock-on 时间)变短. 这为利用具有雪崩倍增机理的GaAs光电导天线产生强THz辐射奠定了基础.
    GaAs photoconductive switch illuminated by a femto-second laser has been widely used in a terabertz (THz) time domain spectroscopy system as a THz wave emission antenna. Now, all of the GaAs photoconductive switches are used in linear mode. However, when the GaAs photoconductive switch operates in an avalanche multiplication mode, the power capacity of output ultrafast electric pulse is much higher than that in a linear mode. So far, nobody has proposed the idea of generating THz waves by using the GaAs photoconductive switches in the avalanche multiplication mode. In this paper, we report the feasibility and research progress of using the GaAs photoconductive switches in the avalanche multiplication mode as the THz sources. By theoretical analysis and experimental research, some results are obtained experimentally as follows. 1) The GaAs photoconductive antenna can operate in an avalanche multiplication mode when illuminated by a femto-second laser pulse with an energy on the order of nJ. 2) The maintaining time of the avalanche multiplication mode, i.e, lock-on period, can be reduced by the quenching mode of photo-activated charge domain. These results lay the foundation for generating the high intensity THz emission by the GaAs photoconductive antenna with the avalanche multiplication mechanism.
      通信作者: 施卫, swshi@mail.xaut.edu.cn
    • 基金项目: 国家自然科学基金重大科学仪器研制专项(批准号: 61427814)、国家自然科学基金(批准号: 51377133)、中国工程物理研究院太赫兹科学技术基金(批准号: CAEPTHZ201404)、中国工程物理研究院脉冲功率重点实验室(批准号: PPLF2013PZ01)、陕西省超快光电科学技术创新团队(批准号: 2014KCT-13)和装备预研基金(批准号: 9140C370504140C37175)资助的课题.
      Corresponding author: Shi Wei, swshi@mail.xaut.edu.cn
    • Funds: Project supported by the Special Fund for Key Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 61427814), the National Natural Science Foundation of China (Grant No. 51377133), the Terahertz Science and Technology Fund of Chinese Academy of Engineering Physics (Grant No. CAEPTHZ201404), the Foundation of Pulse Power Key Laboratory of Chinese Academy of Engineering Physics (Grant No. PPLF2013PZ01), the Foundation of Shaanxi Key Science and Technology Innovation Team, China (Grant No. 2014KTC-13), and the Equipment Pre-research Fund Project, China (Grant No. 9140C370504140C37175).
    [1]

    Takano K, Chiyoda Y, Nishida T, Miyamaru F, Kawabata T, Sasaki H, Takeda M W, Hangyo M 2011 Appl. Phys. Lett. 99 161114

    [2]

    Krause J, Wagner M, Winnerl S, Helm M, Stehr D 2011 Opt. Express 19 19114

    [3]

    Shi W, Hou L, Wang X M 2011 J. Appl. Phys. 110 023111

    [4]

    Rihani S, Faulks R, Beere H, Page H, Gregory I, Evans M, Ritchie D A, Peppe M 2009 Appl. Phys. Lett. 95 051106

    [5]

    Gao Y H, Chen M K, Yin S, Ruffin P, Brantley C, Edwards E 2011 J. Appl. Phys. 109 033108

    [6]

    Miyamaru F, Saito Y, Yamamoto K, Furuya T, Nishizawa S, Tani M 2010 Appl. Phys. Lett. 96 211104

    [7]

    Lu L, Sun J D, Roger A L, Sun Y F, Wu D M, Cai Y, Qin H 2015 Chin. Phys. B 24 028504

    [8]

    Yang Y P, Ranjan S, Zhang W L 2014 Chin. Phys. B 23 128702

    [9]

    Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S, Wu D M 2012 Chin. Phys. B 21 108504

    [10]

    Loubriel G M, Zutavern F J, Baca A G, Hjalmarson H P, Plut T, Helgeson W D, Brown D J 1997 IEEE Trans. Plasma Sci. 25 124

    [11]

    Jerry L H, Bailey D W, Dougal R A, Venkatesan V 1995 IEEE Trans. Power Electron. 10 615

    [12]

    Shi W, Zhao W, Zhang X B, Li E L 2002 Acta Phys. Sin. 51 867 (in Chinese) [施卫, 赵卫, 张显斌, 李恩玲 2002 物理学报 51 867]

    [13]

    Islam N E, Schamiloglu E, Fleddermann C B 1998 Appl. Phys. Lett. 73 1988

    [14]

    Shi W, Qu G H, Xu M, Xue H, Ji W L, Zhang L, Tian L Q 2009 Appl. Phys. Lett. 94 072110

    [15]

    Shi W, Tian L Q, Liu Z, Zhang L Q, Zhang Z Z, Zhou L J, Liu H W, Xie W P 2008 Appl. Phys. Lett. 92 043511

    [16]

    Shi W, Liang Z X 1999 Chin. J. Semicond. 21 53 (in Chinese) [施卫, 梁振宪 1999 半导体学报 21 53]

    [17]

    Shi W 2001 Chin. J. Semicond. 22 1481

    [18]

    Shi W, Chen E Z, Zhang X B, Li Q 2002 Chin. Phys. Lett. 19 1119

    [19]

    Shi W, Tian L 2006 Appl. Phys. Lett. 89 202103

    [20]

    Shi W, Dai H Y, Sun X W 2003 Chin. Opt. Lett. 1 553

    [21]

    Tian L Q, Shi W 2008 J. Semicond. 29 1913

    [22]

    Faulks R, Rihani S, Beere H E, Evans M J, Ritchie D A, Pepper M 2010 Appl. Phys. Lett. 96 081106

    [23]

    Shi W, Zhang Z Z, Hou L 2010 Chin. Phys. Lett. 27 087203

    [24]

    Diao J M, Du L, Ouyang J, Yang P, Nie Z P 2011 J. Electromagn. Waves Appl. 25 2236

    [25]

    Ma Z, Ma H M, Yang C T, Feng K M 2011 J. Syst. Eng. Electron. 22 373

    [26]

    Loubriel G M, Helgeson W D, McLaughlin D L, O'Malley M W, Zutavern F J, Rosen A, Stabile P J 1991 IEEE Trans. Electron Dev. 38 692

  • [1]

    Takano K, Chiyoda Y, Nishida T, Miyamaru F, Kawabata T, Sasaki H, Takeda M W, Hangyo M 2011 Appl. Phys. Lett. 99 161114

    [2]

    Krause J, Wagner M, Winnerl S, Helm M, Stehr D 2011 Opt. Express 19 19114

    [3]

    Shi W, Hou L, Wang X M 2011 J. Appl. Phys. 110 023111

    [4]

    Rihani S, Faulks R, Beere H, Page H, Gregory I, Evans M, Ritchie D A, Peppe M 2009 Appl. Phys. Lett. 95 051106

    [5]

    Gao Y H, Chen M K, Yin S, Ruffin P, Brantley C, Edwards E 2011 J. Appl. Phys. 109 033108

    [6]

    Miyamaru F, Saito Y, Yamamoto K, Furuya T, Nishizawa S, Tani M 2010 Appl. Phys. Lett. 96 211104

    [7]

    Lu L, Sun J D, Roger A L, Sun Y F, Wu D M, Cai Y, Qin H 2015 Chin. Phys. B 24 028504

    [8]

    Yang Y P, Ranjan S, Zhang W L 2014 Chin. Phys. B 23 128702

    [9]

    Sun Y F, Sun J D, Zhang X Y, Qin H, Zhang B S, Wu D M 2012 Chin. Phys. B 21 108504

    [10]

    Loubriel G M, Zutavern F J, Baca A G, Hjalmarson H P, Plut T, Helgeson W D, Brown D J 1997 IEEE Trans. Plasma Sci. 25 124

    [11]

    Jerry L H, Bailey D W, Dougal R A, Venkatesan V 1995 IEEE Trans. Power Electron. 10 615

    [12]

    Shi W, Zhao W, Zhang X B, Li E L 2002 Acta Phys. Sin. 51 867 (in Chinese) [施卫, 赵卫, 张显斌, 李恩玲 2002 物理学报 51 867]

    [13]

    Islam N E, Schamiloglu E, Fleddermann C B 1998 Appl. Phys. Lett. 73 1988

    [14]

    Shi W, Qu G H, Xu M, Xue H, Ji W L, Zhang L, Tian L Q 2009 Appl. Phys. Lett. 94 072110

    [15]

    Shi W, Tian L Q, Liu Z, Zhang L Q, Zhang Z Z, Zhou L J, Liu H W, Xie W P 2008 Appl. Phys. Lett. 92 043511

    [16]

    Shi W, Liang Z X 1999 Chin. J. Semicond. 21 53 (in Chinese) [施卫, 梁振宪 1999 半导体学报 21 53]

    [17]

    Shi W 2001 Chin. J. Semicond. 22 1481

    [18]

    Shi W, Chen E Z, Zhang X B, Li Q 2002 Chin. Phys. Lett. 19 1119

    [19]

    Shi W, Tian L 2006 Appl. Phys. Lett. 89 202103

    [20]

    Shi W, Dai H Y, Sun X W 2003 Chin. Opt. Lett. 1 553

    [21]

    Tian L Q, Shi W 2008 J. Semicond. 29 1913

    [22]

    Faulks R, Rihani S, Beere H E, Evans M J, Ritchie D A, Pepper M 2010 Appl. Phys. Lett. 96 081106

    [23]

    Shi W, Zhang Z Z, Hou L 2010 Chin. Phys. Lett. 27 087203

    [24]

    Diao J M, Du L, Ouyang J, Yang P, Nie Z P 2011 J. Electromagn. Waves Appl. 25 2236

    [25]

    Ma Z, Ma H M, Yang C T, Feng K M 2011 J. Syst. Eng. Electron. 22 373

    [26]

    Loubriel G M, Helgeson W D, McLaughlin D L, O'Malley M W, Zutavern F J, Rosen A, Stabile P J 1991 IEEE Trans. Electron Dev. 38 692

  • [1] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [2] 胡伟达, 李庆, 陈效双, 陆卫. 具有变革性特征的红外光电探测器. 物理学报, 2019, 68(12): 120701. doi: 10.7498/aps.68.20190281
    [3] 桂淮濛, 施卫. 储能电容对GaAs光电导开关快前沿正负对称脉冲输出特性的影响. 物理学报, 2019, 68(19): 194206. doi: 10.7498/aps.68.20190321
    [4] 桂淮濛, 施卫. 线性模式下GaAs光电导开关的时间抖动特性. 物理学报, 2018, 67(18): 184207. doi: 10.7498/aps.67.20180548
    [5] 施卫, 马湘蓉, 薛红. 半绝缘GaAs光电导开关的瞬态热效应. 物理学报, 2010, 59(8): 5700-5705. doi: 10.7498/aps.59.5700
    [6] 施卫, 田立强, 王馨梅, 徐鸣, 马德明, 周良骥, 刘宏伟, 谢卫平. 高压超大电流光电导开关及其击穿特性研究. 物理学报, 2009, 58(2): 1219-1223. doi: 10.7498/aps.58.1219
    [7] 施卫, 薛红, 马湘蓉. 半绝缘GaAs光电导开关体内热电子的光电导振荡特性. 物理学报, 2009, 58(12): 8554-8559. doi: 10.7498/aps.58.8554
    [8] 施卫, 屈光辉, 王馨梅. 半绝缘GaAs光电导开关非线性电脉冲超快上升特性研究. 物理学报, 2009, 58(1): 477-481. doi: 10.7498/aps.58.477
    [9] 施 卫, 王馨梅, 侯 磊, 徐 鸣, 刘 峥. 高增益双层组合GaAs光电导开关设计与实验研究. 物理学报, 2008, 57(11): 7185-7189. doi: 10.7498/aps.57.7185
    [10] 贾婉丽, 施 卫, 屈光辉, 孙小芳. GaAs光电导天线辐射太赫兹波功率的计算. 物理学报, 2008, 57(9): 5425-5428. doi: 10.7498/aps.57.5425
    [11] 贾婉丽, 施 卫, 纪卫莉, 马德明. 光电导开关产生太赫兹电磁波双极特性分析. 物理学报, 2007, 56(7): 3845-3850. doi: 10.7498/aps.56.3845
    [12] 施 卫, 贾婉丽, 纪卫莉, 刘 锴. 光电导开关工作模式的蒙特卡罗模拟. 物理学报, 2007, 56(11): 6334-6339. doi: 10.7498/aps.56.6334
    [13] 贾婉丽, 纪卫莉, 施 卫. 半绝缘GaAs光电导开关产生太赫兹波电场屏蔽效应的二维Monte Carlo模拟. 物理学报, 2007, 56(4): 2042-2046. doi: 10.7498/aps.56.2042
    [14] 邱圣德, 胡承正, 王爱军, 周 详. 十次对称准晶的光电导率. 物理学报, 2006, 55(2): 743-747. doi: 10.7498/aps.55.743
    [15] 舒 强, 舒永春, 张冠杰, 刘如彬, 姚江宏, 皮 彪, 邢晓东, 林耀望, 许京军, 王占国. 调制掺杂GaAs/AlGaAs 2DEG材料持久光电导及子带电子特性研究. 物理学报, 2006, 55(3): 1379-1383. doi: 10.7498/aps.55.1379
    [16] 邓 莉, 刘叶新, 寿 倩, 吴添洪, 赖天树, 文锦辉, 林位株. LT-GaAs飞秒光电导之电场响应特性. 物理学报, 2004, 53(9): 3010-3013. doi: 10.7498/aps.53.3010
    [17] 施 卫, 马德明, 赵 卫. 用光电导开关产生稳幅ps量级时间晃动超快电脉冲的研究. 物理学报, 2004, 53(6): 1716-1720. doi: 10.7498/aps.53.1716
    [18] 张世斌, 孔光临, 徐艳月, 王永谦, 刁宏伟, 廖显伯. 微量硼掺杂非晶硅的瞬态光电导衰退及其光致变化. 物理学报, 2002, 51(1): 111-114. doi: 10.7498/aps.51.111
    [19] 施卫, 赵卫, 张显斌, 李恩玲. 高功率亚纳秒GaAs光电导开关的研究. 物理学报, 2002, 51(4): 867-872. doi: 10.7498/aps.51.867
    [20] 彭景翠. 聚丁二炔(Polydiacetylene)晶体中的光电导性. 物理学报, 1993, 42(1): 142-148. doi: 10.7498/aps.42.142
计量
  • 文章访问数:  3539
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-11
  • 修回日期:  2015-10-08
  • 刊出日期:  2015-11-05

雪崩倍增GaAs光电导太赫兹辐射源研究进展

    基金项目: 国家自然科学基金重大科学仪器研制专项(批准号: 61427814)、国家自然科学基金(批准号: 51377133)、中国工程物理研究院太赫兹科学技术基金(批准号: CAEPTHZ201404)、中国工程物理研究院脉冲功率重点实验室(批准号: PPLF2013PZ01)、陕西省超快光电科学技术创新团队(批准号: 2014KCT-13)和装备预研基金(批准号: 9140C370504140C37175)资助的课题.

摘要: 在飞秒激光激励下用GaAs光电导开关作为太赫兹(THz)辐射天线, 已经广泛用于太赫兹时域光谱系统, 但目前国际上都是使用GaAs光电导开关的线性工作模式, 而GaAs光电导开关的雪崩倍增工作模式所输出的超快电脉冲功率容量远大于其线性工作模式, 迄今为止, 还没有人提出用雪崩倍增机理的GaAs 光电导开关作为辐射源产生THz电磁辐射. 本文探讨了用 雪崩倍增工作模式的GaAs光电导开关作为光电导天线产生THz电磁波的可能性及研究进展. 通过理论分析及实验研究, 在实验上实现了: 1) 利用nJ量级飞秒激光触发GaAs光电导天线, 可以进入雪崩倍增工作模式; 2) 利用光激发电荷畴的猝灭模式, 可以使GaAs光电导天线载流子雪崩倍增模式的延续时间(lock-on 时间)变短. 这为利用具有雪崩倍增机理的GaAs光电导天线产生强THz辐射奠定了基础.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回